首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
East-African mountain forest species often occur in small and isolated populations, whereas species inhabiting the dry lowland savannahs exist in large and interconnected population networks. Taxa with closely related highland and lowland species, such as the East-African White-eye birds, allow testing for the potential effects of the two contrasting distribution patterns, mountain disjunction versus lowland panmixia. In this study, we compare the population genetic and bioacoustic differentiation of two representatives of the genus Zosterops: Zosterops poliogaster is exclusively found in forests at higher elevations; in comparison, Zosterops abyssinicus, only occurs in the dry and warm lowland savannahs. Both species were analysed across a similar geographical scale. Population genetic differentiation was inferred using the same set of 15 polymorphic microsatellite loci for both species. In addition, we quantitatively analyzed bioacoustic traits. Both data sets indicate a strong population differentiation among populations of the highland species, but an absence of differentiation in the lowland species. In addition, the lowland Z. abyssinicus was characterised by a twofold higher genetic diversity than detected for the highland Z. poliogaster. These two contrasting intraspecific population structures may reflect the opposite ecology and distribution of these species: the strong population isolation of Z. poliogaster resulting from long-term restriction to the cool and moist mountain forests at higher elevations has led to strong differentiation among local populations and resulted in a comparatively low level of intraspecific variability. In contrast, population panmixia in the lowland Z. abyssinicus provides a high level of gene flow allowing the maintenance of high genetic diversity and avoiding strong population structuring. These findings need to be considered when planning conservation actions.  相似文献   

2.
The Eastern Afromontane biodiversity hotspot consists of isolated mountain massifs embedded within the dry lowland savannas of East Africa and of which the peaks and ridges are covered by cloud forest remnants. These cloud forests are home to the Mountain White-eye (Zosterops poliogaster), while three congeneric species (Abyssinian White-eye, Zosterops abyssinicus; Yellow White-eye, Zosterops senegalensis; Pemba White-eye, Zosterops vaughani) inhabit the adjacent lowland savannas. We sampled individuals of all four species across Kenya to analyse interspecific genetic relationships as well as intraspecific differentiation among mountain populations of Z. poliogaster. While the level of genetic differentiation among the four species was rather low, genetic differentiation within Z. poliogaster was very high, even between geographically neighbouring populations. Overall, levels of genetic variation varied strongly across all four species, with much higher diversity detected within the three lowland ones. The highland species was characterised by numerous private alleles that were geographically restricted at populations from single mountains, some of which showed evidence of recent population bottlenecks. We conclude that Z. poliogaster populations are both of high conservation value and conservation concern, given the high proportion of endemic alleles and the genetic signatures of high genetic drift and low gene flow that are typical for small and isolated populations.  相似文献   

3.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

4.
Variation recorded within species is often taken to represent evidence for local and ongoing adaptation, but often without the interpopulation variation being subject to analysis across the geographic distribution occupied by the taxon. Here we investigate the rhythmic song structure across the range of three known song types in a variable cicada, Pauropsalta annulata Goding and Froggatt. Statistical analysis of the structure of songs across individuals reveals four discrete clusters that are demonstrated to be independent and stable across extensive geographic space in areas of allopatry and, generally, also into areas of sympatry. This suggests that P. annulata is a cryptic species complex. Unique combinations of plant species are linked with each of the clusters, suggesting that the different populations have independent plant associations. These findings are discussed in relation to similar case studies on cicadas and other organisms, with particular emphasis on the most appropriate approach to testing variation across populations, especially when it is thought to represent populations in the initial stages of evolutionary divergence.  相似文献   

5.
The moist and cool cloud forests of East Africa represent a network of isolated habitats that are separated by dry and warm lowland savannah, offering an opportunity to investigate how strikingly different selective regimes affect species diversification. Here, we used the passerine genus Zosterops (white‐eyes) from this region as our model system. Species of the genus occur in contrasting distribution settings, with geographical mountain isolation driving diversification, and savannah interconnectivity preventing differentiation. We analyze (1) patterns of phenotypic and genetic differentiation in high‐ and lowland species (different distribution settings), (2) investigate the potential effects of natural selection and temporal and spatial isolation (evolutionary drivers), and (3) critically review the taxonomy of this species complex. We found strong phenotypic and genetic differentiation among and within the three focal species, both in the highland species complex and in the lowland taxa. Altitude was a stronger predictor of phenotypic patterns than the current taxonomic classification. We found longitudinal and latitudinal phenotypic gradients for all three species. Furthermore, wing length and body weight were significantly correlated with altitude and habitat type in the highland species Z. poliogaster. Genetic and phenotypic divergence showed contrasting inter‐ and intraspecific structures. We suggest that the evolution of phenotypic characters is mainly driven by natural selection due to differences in the two macro‐habitats, cloud forest and savannah. In contrast, patterns of neutral genetic variation appear to be rather driven by geographical isolation of the respective mountain massifs. Populations of the Z. poliogaster complex, as well as Z. senegalensis and Z. abyssinicus, are not monophyletic based on microsatellite data and have higher levels of intraspecific differentiation compared to the currently accepted species.  相似文献   

6.
Plants are predicted to show floral adaptation to geographic variation in the most effective pollinator, potentially leading to reproductive isolation and genetic divergence. Many sexually deceptive orchids attract just a single pollinator species, limiting opportunities to experimentally investigate pollinator switching. Here, we investigate Drakaea concolor, which attracts two pollinator species. Using pollinator choice tests, we detected two morphologically similar ecotypes within D. concolor. The common ecotype only attracted Zaspilothynnus gilesi, whereas the rare ecotype also attracted an undescribed species of Pogonothynnus. The rare ecotype occurred at populations nested within the distribution of the common ecotype, with no evidence of ecotypes occurring sympatrically. Surveying for pollinators at over 100 sites revealed that ecotype identity was not correlated with wasp availability, with most orchid populations only attracting the rare Z. gilesi. Using microsatellite markers, genetic differentiation among populations was very low (GST = 0.011) regardless of ecotype, suggestive of frequent gene flow. Taken together, these results may indicate that the ability to attract Pogonothynnus has evolved recently, but this ecotype is yet to spread. The nested distribution of ecotypes, rather than the more typical formation of ecotypes in allopatry, illustrates that in sexually deceptive orchids, pollinator switching could occur throughout a species' range, resulting from multiple potentially suitable but unexploited pollinators occurring in sympatry. This unusual case of sympatric pollinators highlights D. concolor as a promising study system for further understanding the process of pollinator switching from ecological, chemical and genetic perspectives.  相似文献   

7.
Abstract Orchids of the genus Ophrys (Orchidaceae) are pollinated by male bees and wasps through sexual deception. The Ophrys sphegodes group encompasses several closely related species that differ slightly in floral morphology and are pollinated by different solitary bee species. Populations representing different species of the O. sphegodes group often flower simultaneously in sympatry. To test whether gene flow across the species boundaries occurs in these sympatric populations, or whether they are reproductively isolated, we examined the distribution of genetic variation within and among populations and species of this group. We collected at each of five different localities in southern France and Italy two sympatric, co-flowering Ophrys populations, representing six Ophrys species in total. The six microsatellite loci surveyed were highly variable. Genetic differentiation among geographically distant populations of the same species was lower than differentiation among sympatric populations of different species. However, the strength of genetic differentiation among species was among the lowest reported for orchids. Genotype assignment tests and marker-based estimates of gene flow revealed that gene flow across species boundaries occurred and may account for the low observed differentiation among species. These results suggest that sexual deceit pollination in Ophrys may be less specific than thought, or that rare mistakes occur.  相似文献   

8.
Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co‐occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes.  相似文献   

9.
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Qst (Pst) and Fst values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.  相似文献   

10.
The occurrence of cryptic and pseudocryptic species, often living in sympatry, is widespread among microalgae. This phenomenon raises important questions about niche partitioning between these closely related species. To date, however, few studies have addressed the ecological mechanisms underlying sympatry in cryptic and pseudocryptic species. As a result, we have only a limited understanding of the factors that govern their distribution along environmental gradients. Here, we used the ribosomal internal transcribed spacer (ITS), 18S rRNA gene, and the RUBISCO LSU (rbcL) chloroplast gene sequence data together with cell wall morphology to show that estuarine populations of the widespread and common benthic diatom Navicula phyllepta Kütz. consist of pseudocryptic species. Growth rate measurements in function of salinity showed that N. phyllepta strains assigned to the different species differed in their tolerance to low salinities (<5 practical salinity units, psu), which was reflected by their different (but widely overlapping) distribution in the Westerschelde estuary (the Netherlands). Multiple regression analyses of the factors determining the abundance of the different species in field samples revealed that, in addition to salinity, sediment type and ammonium concentrations were probably equally important. Our results show that N. phyllepta sensu lato comprises different species with specialized ecophysiological characteristics rather than generalists with a broad adaptability to different environmental conditions.  相似文献   

11.
Eucalyptus camaldulensis is one of the most widely utilised eucalypts. It is also the only eucalypt that occurs across the Australian continent, playing a key ecological role as fauna habitat and in riverbank stabilisation. Despite its ecological and economic importance, uncertainty remains regarding the delineation of genetic and morphological variants. Nine hundred and ninety trees from 97 populations, representing the species’ geographic range were genotyped using 15 microsatellite loci and patterns of diversity compared with restriction fragment length polymorphisms in 29 of these populations. Both markers showed that despite having a riverine distribution, downstream seed dispersal has had less influence than geographic distance on dispersal patterns. Spatial patterns in the distribution of microsatellite genotypes were compared with environmental parameters and boundaries defined by river systems, drainage basins and proposed subspecies. Significant genetic differences among populations within river systems indicated that rivers should not be treated as a single genetic entity in conservation or breeding programmes. Strong geographic trends were evident with 40% of variation in genetic diversity explained by latitude and moisture index. Isolation by distance and significant correlations between genetic distance and environmental parameters for most loci suggest historical factors have had more influence than selection on current patterns of distribution of genetic diversity. Geographic structuring of molecular variation, together with congruence between genetic and morphological variation indicate that E. camaldulensis should be treated as a number of subspecies rather than a single variable taxon. High levels of genetic diversity and geographic trends in the distribution of variation provide a firm basis for further exploration of the species’ genetic resources.  相似文献   

12.
Based on our own empirical data and a literature review, we explore the possibility that biotic interactions, specifically competition, might be responsible for creating, and/or maintaining, geographic isolation. Ecological niche modeling was first used to test whether the distributions of 2 species of Neotropical marsupials (Marmosa robinsoni and M. xerophila) fit the predicted geographic pattern of competitive exclusion: one species predominates in areas environmentally suitable for both species along real contact zones. Secondly, we examined the connectivity among populations of each species, interpreted in the light of the niche models. The results show predominance of M. xerophila along its contact zone with M. robinsoni in the Península de Paraguaná in northwestern Venezuela. There, M. robinsoni has an extremely restricted distribution despite climatic conditions suitable for both species across the peninsula and its isthmus. The latter two results suggest that M. xerophila may be responsible for the geographic isolation of the peninsular populations of M. robinsoni with respect to other populations of the latter species in northwestern Venezuela. These results may represent an example of allopatry caused, or at least maintained, by competition. Our results and a review of numerous studies in which biotic interactions restrict species distributions (including at the continental scale) support a previously overlooked phenomenon: biotic interactions can isolate populations of a species. We propose 2 general mechanisms, intrusion and contraction, to classify allopatric conditions caused by various classes of biotic interactions. We present a necessary modification of the concept of ecological vicariance to include biotic interactions as possible vicariant agents regardless of whether genetic differentiation occurs or not.  相似文献   

13.
Recent integration of ecological niche models in phylogeographic studies is improving our understanding of the processes structuring genetic variation across landscapes. Previous studies on the amphibian Bufotes boulengeri boulengeri uncovered a surprisingly weak intraspecific differentiation across the Maghreb region. We widely sampled this species from Morocco to Egypt and sequenced one nuclear and three mitochondrial (mtDNA) genes to determine the level of genetic variability across its geographic range. We evaluated these data with ecological niche modeling to reveal its evolutionary history in response to climate change during the Quaternary. Our results highlight some mtDNA phylogeographic structure within this species, with one haplogroup endemic to coastal Morocco, and one haplogroup widely distributed throughout North Africa. No or little genetic differentiation is observed between isolated populations from the Hoggar Mountains, the Sabha district and the islands of Kerkennah and Lampedusa, compared to others populations. This can be explained by the expansion of the distribution range of B. b. boulengeri during glacial periods. This might have facilitated the species’ dispersal and subsequent gene flow between most North African localities.  相似文献   

14.
Movement is a prominent process shaping genetic population structure. In many northern mammal species, population structure is formed by geographic distance, geographical barriers and various ecological factors that influence movement over the landscape. The Arctic fox Vulpes lagopus is a highly mobile, opportunistic carnivore of the Arctic that occurs in two main ecotypes with different ecological adaptations. We assembled microsatellite data in 7 loci for 1834 Arctic foxes sampled across their entire distribution to describe the circumpolar population structure and test the impact of (1) geographic distance, (2) geographical barriers and (3) ecotype designation on the population structure. Both Structure and Geneland demonstrated distinctiveness of Iceland and Scandinavia whereas low differentiation was observed between North America–northern Greenland, Svalbard and Siberia. Genetic differentiation was significantly correlated to presence of sea ice on a global scale, but not to geographical distance or ecotype designation. However, among areas connected by sea ice, we recorded a pattern of isolation by distance. The maximum likelihood approach in Migrate suggested that connectivity across North America–northern Greenland and Svalbard was particularly high. Our results demonstrate the importance of sea ice for maintaining connectivity between Arctic fox populations and we therefore predict that climate change will increase genetic divergence among populations in the future.  相似文献   

15.
Floristic differentiation of the oriental beech (Fagus orientalis Lipsky) forests in Turkey and Bulgaria was investigated and the role of geographical and topographical factors in this differentiation was assessed. After geographical and ecological stratification of the available 922 relevés, 288 remained. Classification, by applying cluster analysis, resulted in seven vegetation units defined by species composition which represent the geographical and ecological variation of Fagus orientalis forests. DCA ordination was applied to these units by passively projecting their chorological structure, as supplementary variables. For more detailed interpretation of vegetation types with similar geographic distribution patterns, PCA was applied by passively projecting the chorological elements, life-forms and topographical factors as supplementary variables. Seven vegetation units representing the geographical and ecological variety of Fagus orientalis forests were described. Four vegetation units represent the core area of Fagus orientalis distribution on the western and middle coast of the Black Sea region (Euxine region); the remaining three types represent the distribution in the eastern Black Sea region (Colchic region), the distribution in western and southern Anatolia under the influence of the Mediterranean climate and the distribution in the transitional zone from the Euxine region to the continental parts of Inner Anatolia, respectively. The four vegetation types in Euxine region reflect the decreasing effect of Black Sea towards Inner Anatolia, as well as altitudinal differences, except the forest type representing forests on calcareous sites. The other three vegetation units represent ravine, lowland to montane and altimontane forests in Euxine region. Fagus orientalis forests could be distinguished by their floristic composition, their chorological elements and life-forms spectra, which reflect a geographical and ecological gradients.  相似文献   

16.
Incipient reproductive barriers are a common characteristic of oak species. Disruption of these barriers promotes changes in diversity and genetic structure of the species involved. Quercus castanea is a red oak with wide geographic distribution in Mexico, which presents atypically high morphological variability when it occurs in sympatry with other red oak species, suggesting that hybridization may explain the observed variation. We tested if the genetic structure and diversity levels of Q. castanea are related to the number of red oak species growing in sympatry. In total, 14 microsatellite (SSRs) primers (six nSSRs and eight cpSSRs) were used in 120 Q. castanea individuals (20/site) belonging to six populations, where the number of red oak species associated varied from zero to five. Results showed a positive and significant relationship between the genetic diversity of Q. castanea and the number of red oak species growing in sympatry, regardless of the marker type or the parameter of genetic diversity analyzed. Also, we found a higher genetic differentiation of Q. castanea populations using cpSSRs in comparison with nSSRs. Our results suggest that temperate forests with high red oaks species richness co-dominated by Q. castanea promote the increase in this species genetic diversity. From a conservation perspective, high genetic diversity levels of foundation species such as Q. castanea may have positive cascade effects extending to other species in the community.  相似文献   

17.
We compared the distributions of Alouatta palliata and A. pigra in southeastern Mexico and Central America with geographic and ecological features to infer current barriers and ecological preferences. Distribution data were obtained from museum specimen localities, study sites, historic records and field surveys and integrated into digital elevation and ecosystem maps using GIS. A. pigra evidently occurs at a number of sites above 2,000 m, where temperatures can even drop below zero on some days of the year, thus indicating a broader ecological tolerance than previously reported. Both species occupy a number of vegetation types and can be found in seasonal and nonseasonal forests. We identified the highland massif of northern Central America and its associated coniferous and subalpine vegetation as a geographic barrier that separates the species. In the past, distribution maps for these species have indicated adjacent contiguous ranges, but we propose that they are largely separated by these mountains. There are two contact zones: a broad area of sympatry north of the highland massif in Mexico and a narrow zone in eastern Guatemala where parapatry is maintained by a river barrier and where only A. pigra occurs in the high elevations and cooler habitats inland. We explore an alternative biogeographic scenario for the split of the two species that accounts for the current distribution and differences in elevation and cold tolerances. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
We investigated the influence of differing life history traits on the genetic structure of the related species Mimetes fimbriifolius and Mimetes hirtus (Proteaceae), which occur in the South African fynbos. Both species are bird‐pollinated and ant‐dispersed, but differ in rarity, longevity, ecological strategy and the fragmentation of their distribution area. We used AFLPs to study genetic variation within and between 21 populations of these two species across their distribution range. AFLP analysis revealed significantly higher genetic variation within populations of M. fimbriifolius than within M. hirtus. While M. fimbriifolius clearly lacked any significant genetic differentiation between populations, a distinct geographic pattern was observed for M. hirtus. Differentiation was, however, stronger at the regional (ΦPT = 0.57) than at the local scale (ΦPT = 0.08). Our results clearly indicate that even closely related species that share the same mode of pollination and seed dispersal can differ in their genetic structure, depending on the magnitude of fragmentation, longevity of individuals and ecological strategy.  相似文献   

19.
Geographic range shifts can cause secondary contact and hybridization between closely related species, revealing mechanisms of species formation and integrity. These dynamics typically play out in restricted geographic regions, but highly vagile species may experience major distributional changes resulting in broad areas of contact. The Glossy Ibis (Plegadis falcinellus) is a dispersive waterbird of the Old World and Australia that colonized eastern North America in the early 19th century and came into contact with the native White‐faced Ibis (P. chihi). Putative hybrids between the two species have been observed across North America. To examine the population genomic consequences of this natural invasion, we sequenced 4,616 ultraconserved elements from 66 individuals sampled across the distributions of falcinellus, chihi, and the Puna Ibis (P. ridgwayi) of South America. We found genomic differentiation among the three species. Loci with high sequence divergence were often shared across all pairwise species comparisons, were associated with regions of high nucleotide diversity, and were concentrated on the Z chromosome. We detected signals of genetic admixture between chihi and falcinellus in individuals both near and far from their core area of sympatry. Genomic cline analyses revealed evidence of greater introgression into falcinellus from chihi, but we found little evidence for selection against hybrids. We also found signals of admixture between ridgwayi and South American populations of chihi. Our results indicate vagile species can experience pervasive introgression upon secondary contact, although we suggest these dynamics may be more ephemeral than the stable hybrid zones often observed in less dispersive organisms.  相似文献   

20.
Determining how a new hybrid lineage can achieve reproductive isolation is a key to understanding the process and mechanisms of homoploid hybrid speciation. Here, we evaluated the degree and nature of reproductive isolation between the ecologically successful hybrid species Pinus densata and its parental species P. tabuliformis and P. yunnanensis. We performed interspecific crosses among the three species to assess their crossability. We then conducted reciprocal transplantation experiments to evaluate their fitness differentiation, and to examine how natural populations representing different directions of introgression differ in adaptation. The crossing experiments revealed weak genetic barriers among the species. The transplantation trials showed manifest evidence of local adaptation as the three species all performed best in their native habitats. Pinus densata populations from the western edge of its distribution have evolved a strong local adaptation to the specific habitat in that range; populations representing different directions of introgressants with the two parental species all showed fitness disadvantages in this P. densata habitat. These observations illustrate that premating isolation through selection against immigrants from other habitat types or postzygotic isolation through selection against backcrosses between the three species is strong. Thus, ecological selection in combination with endogenous components and geographic isolation has likely played a significant role in the speciation of P. densata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号