首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
3.
Long‐distance migration is a common phenomenon across the animal kingdom but the scale of annual migratory movements has made it difficult for researchers to estimate survival rates during these periods of the annual cycle. Estimating migration survival is particularly challenging for small‐bodied species that cannot carry satellite tags, a group that includes the vast majority of migratory species. When capture–recapture data are available for linked breeding and non‐breeding populations, estimation of overall migration survival is possible but current methods do not allow separate estimation of spring and autumn survival rates. Recent development of a Bayesian integrated survival model has provided a method to separately estimate the latent spring and autumn survival rates using capture–recapture data, though the accuracy and precision of these estimates has not been formally tested. Here, I used simulated data to explore the estimability of migration survival rates using this model. Under a variety of biologically realistic scenarios, I demonstrate that spring and autumn migration survival can be estimated from the integrated survival model, though estimates are biased toward the overall migration survival probability. The direction and magnitude of this bias are influenced by the relative difference in spring and autumn survival rates as well as the degree of annual variation in these rates. The inclusion of covariates can improve the model's performance, especially when annual variation in migration survival rates is low. Migration survival rates can be estimated from relatively short time series (4–5 years), but bias and precision of estimates are improved when longer time series (10–12 years) are available. The ability to estimate seasonal survival rates of small, migratory organisms opens the door to advancing our understanding of the ecology and conservation of these species. Application of this method will enable researchers to better understand when mortality occurs across the annual cycle and how the migratory periods contribute to population dynamics. Integrating summer and winter capture data requires knowledge of the migratory connectivity of sampled populations and therefore efforts to simultaneously collect both survival and tracking data should be a high priority, especially for species of conservation concern.  相似文献   

4.
5.
Quantitative genetic analyses have been increasingly used to estimate the genetic basis of life‐history traits in natural populations. Imperfect detection of individuals is inherent to studies that monitor populations in the wild, yet it is seldom accounted for by quantitative genetic studies, perhaps leading to flawed inference. To facilitate the inclusion of imperfect detection of individuals in such studies, we develop a method to estimate additive genetic variance and assess heritability for binary traits such as survival, using capture–recapture (CR) data. Our approach combines mixed‐effects CR models with a threshold model to incorporate discrete data in a standard ‘animal model’ approach. We employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters. We illustrate our approach using data from a wild population of blue tits (Cyanistes caeruleus) and present the first estimate of heritability of adult survival in the wild. In agreement with the prediction that selection should deplete additive genetic variance in fitness, we found that survival had low heritability. Because the detection process is incorporated, capture–recapture animal models (CRAM) provide unbiased quantitative genetics analyses of longitudinal data collected in the wild.  相似文献   

6.
  1. In capture–recapture studies, recycled individuals occur when individuals lose all of their tags and are recaptured as though they were new individuals. Typically, the effect of these recycled individuals is assumed negligible.
  2. Through a simulation‐based study of double‐tagging experiments, we examined the effect of recycled individuals on parameter estimates in the Jolly–Seber model with tag loss (Cowen & Schwarz, 2006). We validated the simulation framework using long‐term census data of elephant seals.
  3. Including recycled individuals did not affect estimates of capture, survival, and tag‐retention probabilities. However, with low tag‐retention rates, high capture rates, and high survival rates, recycled individuals produced overestimates of population size. For the elephant seal case study, we found population size estimates to be between 8% and 53% larger when recycled individuals were ignored.
  4. Ignoring the effects of recycled individuals can cause large biases in population size estimates. These results are particularly noticeable in longer studies.
  相似文献   

7.
In this study, the spot pattern in Hippocampus guttulatus was analysed using a computer programme algorithm that allowed individual comparison. This methodology was first tested in a controlled environment using 51 adult and 55 juvenile H. guttulatus. Positive matches were obtained in 86·3 and 83·6% of the adults and juveniles, respectively. In a second experiment, monthly surveys were carried out in five selected locations in the Ria Formosa Lagoon, south Portugal, over the course of a year and a total of 980 photographs were analysed. Photographed H. guttulatus were re‐sighted one to nine times during the course of the survey period with an overall re‐sight record of over 30%. Photo‐identification was therefore shown to be a useful tool for non‐invasive mark–recapture studies that can be successfully used to survey the population abundance of H. guttulatus aged 6 months or older in consecutive years. This could be of great value when considering the assessment of H. guttulatus populations and understanding changes over time.  相似文献   

8.
Matrix population models, elasticity analysis and loop analysis can potentially provide powerful techniques for the analysis of life histories. Data from a capture–recapture study on a population of southern highland water skinks (Eulamprus tympanum) were used to construct a matrix population model. Errors in elasticities were calculated by using the parametric bootstrap technique. Elasticity and loop analyses were then conducted to identify the life history stages most important to fitness. The same techniques were used to investigate the relative importance of fast versus slow growth, and rapid versus delayed reproduction. Mature water skinks were long‐lived, but there was high immature mortality. The most sensitive life history stage was the subadult stage. It is suggested that life history evolution in E. tympanum may be strongly affected by predation, particularly by birds. Because our population declined over the study, slow growth and delayed reproduction were the optimal life history strategies over this period. Although the techniques of evolutionary demography provide a powerful approach for the analysis of life histories, there are formidable logistical obstacles in gathering enough high‐quality data for robust estimates of the critical parameters.  相似文献   

9.
Non‐invasive genetic sampling is an increasingly popular approach for investigating the demographics of natural populations. This has also become a useful tool for managers and conservation biologists, especially for those species for which traditional mark–recapture studies are not practical. However, the consequence of collecting DNA indirectly is that an individual may be sampled multiple times per sampling session. This requires alternative statistical approaches to those used in traditional mark–recapture studies. Here we present the R package capwire , an implementation of the population size estimators of Miller et al. (Molecular Ecology 2005; 14 : 1991), which were designed to deal specifically with this type of sampling. The aim of this project is to enable users across platforms to easily manipulate their data and interact with existing R packages. We have also provided functions to simulate data under a variety of scenarios to allow for rigorous testing of the robustness of the method and to facilitate further development of this approach.  相似文献   

10.
Estimating the relative abundance (prevalence) of different population segments is a key step in addressing fundamental research questions in ecology, evolution, and conservation. The raw percentage of individuals in the sample (naive prevalence) is generally used for this purpose, but it is likely to be subject to two main sources of bias. First, the detectability of individuals is ignored; second, classification errors may occur due to some inherent limits of the diagnostic methods. We developed a hidden Markov (also known as multievent) capture–recapture model to estimate prevalence in free‐ranging populations accounting for imperfect detectability and uncertainty in individual's classification. We carried out a simulation study to compare naive and model‐based estimates of prevalence and assess the performance of our model under different sampling scenarios. We then illustrate our method with a real‐world case study of estimating the prevalence of wolf (Canis lupus) and dog (Canis lupus familiaris) hybrids in a wolf population in northern Italy. We showed that the prevalence of hybrids could be estimated while accounting for both detectability and classification uncertainty. Model‐based prevalence consistently had better performance than naive prevalence in the presence of differential detectability and assignment probability and was unbiased for sampling scenarios with high detectability. We also showed that ignoring detectability and uncertainty in the wolf case study would lead to underestimating the prevalence of hybrids. Our results underline the importance of a model‐based approach to obtain unbiased estimates of prevalence of different population segments. Our model can be adapted to any taxa, and it can be used to estimate absolute abundance and prevalence in a variety of cases involving imperfect detection and uncertainty in classification of individuals (e.g., sex ratio, proportion of breeders, and prevalence of infected individuals).  相似文献   

11.
12.
Linkage analysis of quantitative trait loci in multiple line crosses   总被引:8,自引:0,他引:8  
Yi N  Xu S 《Genetica》2002,114(3):217-230
Simple line crosses, for example, backcross and F2, are commonly used in mapping quantitative trait loci (QTL). However, these simple crosses are rarely used alone in commercial plant breeding; rather, crosses involving multiple inbred lines or several simple crosses but connected by shared inbred lines may be common in plant breeding. Mapping QTL using crosses of multiple lines is more relevant to plant breeding. Unfortunately, current statistical methods and computer programs of QTL mapping are all designed for simple line crosses or multiple line crosses but under a regular mating system. It is not straightforward to extend the existing methods to handle multiple line crosses under irregular and complicated mating designs. The major hurdle comes from irregular inbreeding, multiple generations, and multiple alleles. In this study, we develop a Bayesian method implemented via the Markov chain Monte Carlo (MCMC) algorithm for mapping QTL using complicated multiple line crosses. With the MCMC algorithm, we are able to draw a complete path of the gene flow from founder alleles to their descendents via a recursive process. This has greatly simplified the problem caused by irregular mating and inbreeding in the mapping population. Adopting the reversible jump MCMC algorithm, we are able to simultaneously search for multiple QTL along the genome. We can even infer the posterior distribution of the number of QTL, one of the most important parameters in QTL study. Application of the new MCMC based QTL mapping procedure is demonstrated using two different mating designs. Design I involves two inbred lines and their derived F1, F2, and BC populations. Design II is a half-diallel cross involving three inbred lines. The two designs appear different, but can be handled with the same robust computer program.  相似文献   

13.
The role of past climatic change in shaping the distributions of tropical rain forest vertebrates is central to long-standing hypotheses about the legacy of the Quaternary ice ages. One approach to testing such hypotheses is to use genetic data to infer the demographic history of codistributed species. Population genetic theory that relates the structure of allelic genealogies to historical changes in effective population size can be used to detect a past history of demographic expansion or contraction. The fruit bats Cynopterus sphinx and C. brachyotis (Chiroptera: Pteropodidae) exhibit markedly different distribution patterns across the Indomalayan region and therefore represent an exemplary species pair to use for such tests. The purpose of this study was to test alternative hypotheses about historical patterns of demographic expansion and contraction in C. sphinx and C. brachyotis using a coalescent-based analysis of microsatellite variation. Specifically, we used a hierarchical Bayesian model based on Markov chain Monte Carlo simulations to estimate the posterior distribution of genealogical and demographic parameters. The results revealed strong evidence for population contraction in both species. Evidence for a population contraction in C. brachyotis was expected on the basis of biogeographic considerations. However, similar evidence for population contraction in C. sphinx does not support the hypothesis that this species underwent a pronounced range expansion during the late Quaternary. Genetic evidence for population decline may reflect the consequences of habitat destruction on a more recent time scale.  相似文献   

14.
The impact of demographic parameters on the genetic population structure and viability of organisms is a long‐standing issue in the study of fragmented populations. Demographic and genetic tools are now readily available to estimate census and effective population sizes and migration and gene flow rates with increasing precision. Here we analysed the demography and genetic population structure over a recent 15‐year time span in five remnant populations of Cabanis's greenbul (Phyllastrephus cabanisi), a cooperative breeding bird in a severely fragmented cloud forest habitat. Contrary to our expectation, genetic admixture and effective population sizes slightly increased, rather than decreased between our two sampling periods. In spite of small effective population sizes in tiny forest remnants, none of the populations showed evidence of a recent population bottleneck. Approximate Bayesian modelling, however, suggested that differentiation of the populations coincided at least partially with an episode of habitat fragmentation. The ratio of meta‐Ne to meta‐Nc was relatively low for birds, which is expected for cooperative breeding species, while Ne/Nc ratios strongly varied among local populations. While the overall trend of increasing population sizes and genetic admixture may suggest that Cabanis's greenbuls increasingly cope with fragmentation, the time period over which these trends were documented is rather short relative to the average longevity of tropical species. Furthermore, the critically low Nc in the small forest remnants keep the species prone to demographic and environmental stochasticity, and it remains open if, and to what extent, its cooperative breeding behaviour helps to buffer such effects.  相似文献   

15.
  1. Invasive pests pose a great threat to forest, woodland, and urban tree ecosystems. The oak processionary moth (OPM) is a destructive pest of oak trees, first reported in the UK in 2006. Despite great efforts to contain the outbreak within the original infested area of South‐East England, OPM continues to spread.
  2. Here, we analyze data consisting of the numbers of OPM nests removed each year from two parks in London between 2013 and 2020. Using a state‐of‐the‐art Bayesian inference scheme, we estimate the parameters for a stochastic compartmental SIR (susceptible, infested, and removed) model with a time‐varying infestation rate to describe the spread of OPM.
  3. We find that the infestation rate and subsequent basic reproduction number have remained constant since 2013 (with R0 between one and two). This shows further controls must be taken to reduce R0 below one and stop the advance of OPM into other areas of England.
  4. Synthesis. Our findings demonstrate the applicability of the SIR model to describing OPM spread and show that further controls are needed to reduce the infestation rate. The proposed statistical methodology is a powerful tool to explore the nature of a time‐varying infestation rate, applicable to other partially observed time series epidemic data.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号