首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: We genotyped 180 captive desert tortoises (Gopherus agassizii) from Kingman (n = 45), Phoenix (n = 113), and Tucson (n = 22), Arizona, USA, to determine if the genetic lineage of captives is associated with that of wild tortoises in the local area (Sonoran Desert). We tested all samples for 16 short tandem repeats and sequenced 1,109 base pairs of mitochondrial DNA (mtDNA). To determine genetic origin, we performed assignment tests against a reference database of 997 desert tortoise samples collected throughout the Mojave and Sonoran Deserts. We found that >40% of our Arizona captive samples were genetically of Mojave Desert or hybrid origin, with the percentage of individuals exhibiting the Mojave genotype increasing as the sample locations approached the California, USA, border. In Phoenix, 11.5% were Sonoran–Mojave crosses, and 8.8% were hybrids between desert tortoise and Texas tortoise (G. berlandieri). Our findings present many potential implications for wild tortoises in the Sonoran Desert of Arizona. Escaped or released captive tortoises with Mojave or hybrid genotypes have the potential to affect the genetic composition of Sonoran wild populations. Genotyping captive desert tortoises could be used to inform the adoption process, and thereby provide additional protection to native desert-tortoise populations in Arizona.  相似文献   

2.
We compared egg size phenotypes and tested several predictions from the optimal egg size (OES) and bet‐hedging theories in two North American desert‐dwelling sister tortoise taxa, Gopherus agassizii and G. morafkai, that inhabit different climate spaces: relatively unpredictable and more predictable climate spaces, respectively. Observed patterns in both species differed from the predictions of OES in several ways. Mean egg size increased with maternal body size in both species. Mean egg size was inversely related to clutch order in G. agassizii, a strategy more consistent with the within‐generation hypothesis arising out of bet‐hedging theory or a constraint in egg investment due to resource availability, and contrary to theories of density dependence, which posit that increasing hatchling competition from later season clutches should drive selection for larger eggs. We provide empirical evidence that one species, G. agassizii, employs a bet‐hedging strategy that is a combination of two different bet‐hedging hypotheses. Additionally, we found some evidence for G. morafkai employing a conservative bet‐hedging strategy. (e.g., lack of intra‐ and interclutch variation in egg size relative to body size). Our novel adaptive hypothesis suggests the possibility that natural selection favors smaller offspring in late‐season clutches because they experience a more benign environment or less energetically challenging environmental conditions (i.e., winter) than early clutch progeny, that emerge under harsher and more energetically challenging environmental conditions (i.e., summer). We also discuss alternative hypotheses of sexually antagonistic selection, which arise from the trade‐offs of son versus daughter production that might have different optima depending on clutch order and variation in temperature‐dependent sex determination (TSD) among clutches. Resolution of these hypotheses will require long‐term data on fitness of sons versus daughters as a function of incubation environment, data as yet unavailable for any species with TSD.  相似文献   

3.
Moving hybrid zones provide compelling examples of evolution in action, yet long‐term studies that test the assumptions of hybrid zone stability are rare. Using replicated transect samples collected over a 10‐year interval from 2002 to 2012, we find evidence for concerted movement of genetic clines in a plateau fence lizard hybrid zone (Sceloporus tristichus) in Arizona. Cline‐fitting analyses of SNP and mtDNA data both provide evidence that the hybrid zone shifted northward by approximately 2 km during the 10‐year interval. For each sampling period, the mtDNA cline centre is displaced from the SNP cline centre and maintaining an introgression distance of approximately 3 km. The northward expansion of juniper trees into the Little Colorado River Basin in the early 1900s provides a plausible mechanism for hybrid zone formation and movement, and a broadscale quantification of recent land cover change provides support for increased woody species encroachment at the southern end of the hybrid zone. However, population processes can also contribute to hybrid zone movement, and the current stability of the ecotone habitats in the centre of the hybrid zone suggests that movement could decelerate in the future.  相似文献   

4.
5.
River connections via artificial canals will bring about secondary contacts between previously isolated fish species. Here, we present a genetic consequence of such a secondary contact between Cobitis fish species, C. lutheri in the Dongjin River, and C. tetralineata in the Seomjin River in Korea. The construction of water canals about 80 years ago has unidirectionally introduced C. tetralineata into the native habitat of C. lutheri, and then these species have hybridized in the main stream section of the Dongjin River. According to the divergence population genetic analyses of DNA sequence data, the two species diverged about 3.3 million years ago, which is interestingly coincident with the unprecedented paleoceanographic change that caused isolations of the paleo‐river systems in northeast Asia due to sea‐level changes around the late Pliocene. Multilocus genotypic data of nine microsatellites and three nuclear loci revealed an extensively admixed structure in the hybrid zone with a high proportion of various post‐F1 hybrids. Surprisingly, pure native C. lutheri was absent in the hybrid zone in contrast to the 7% of pure C. tetralineata. Such a biased proportion must have resulted from the dominant influence of continually introducing C. tetralineata on the native C. lutheri which has no supply of natives from other tributaries to the hybrid zone due to numerous low‐head dams. In addition, mating experiments indicated that there is no discernible reproductive isolation between them. All the results suggest that the gene pool of native C. lutheri is being rapidly replaced by that of continually introducing C. tetralineata through a hybrid swarm for the last 80 years, which will ultimately lead to the genomic extinction of natives in this hybrid zone.  相似文献   

6.
The conservation of tortoises poses a unique situation because several threatened species are commonly kept as pets within their native ranges. Thus, there is potential for captive populations to be a reservoir for repatriation efforts. We assess the utility of captive populations of the threatened Agassiz’s desert tortoise (Gopherus agassizii) for recovery efforts based on genetic affinity to local areas. We collected samples from 130 captive desert tortoises from three desert communities: two in California (Ridgecrest and Joshua Tree) and the Desert Tortoise Conservation Center (Las Vegas) in Nevada. We tested all samples for 25 short tandem repeats and sequenced 1,109 bp of the mitochondrial genome. We compared captive genotypes to a database of 1,258 Gopherus samples, including 657 wild caught G. agassizii spanning the full range of the species. We conducted population assignment tests to determine the genetic origins of the captive individuals. For our total sample set, only 44 % of captive individuals were assigned to local populations based on genetic units derived from the reference database. One individual from Joshua Tree, California, was identified as being a Morafka’s desert tortoise, G. morafkai, a cryptic species which is not native to the Mojave Desert. Our data suggest that captive desert tortoises kept within the native range of G. agassizii cannot be presumed to have a genealogical affiliation to wild tortoises in their geographic proximity. Precautions should be taken before considering the release of captive tortoises into the wild as a management tool for recovery.  相似文献   

7.
Habitat restoration is an integral feature of wildlife conservation. However, funding and opportunities for habitat restoration are limited, and therefore, it is useful for targeted restoration to provide positive outcomes for non‐target species. Here, we investigate the possibility of habitat creation and management benefitting two threatened wetland specialists: the Green and Golden Bell Frog (Litoria aurea) and the Large‐footed Myotis (Myotis macropus). This study involved two components: (i) assessing co‐occurrence patterns of these species in a wetland complex created for the Green and Golden Bell Frog (n = 9) using counts, and (ii) comparing foraging activity of Large‐footed Myotis in wetlands with low and high aquatic vegetation (n = 6 and 7, respectively) using echolocation metres. Since Large‐footed Myotis possesses a unique foraging behaviour of trawling for aquatic prey, we hypothesised that foraging activity of this species would be higher in wetlands with low aquatic vegetation coverage. Additionally, we provide observations of its potential prey items. We identified one created wetland where both species were found in relatively high numbers, and this wetland had a permanent hydrology, was free of the introduced fish Gambusia (Gambusia holbrooki) and had low aquatic vegetation coverage. We also found that Myotis feeding activity was significantly higher in low aquatic vegetation coverage wetlands (x? = 65.72 ± 27.56 SE) compared to high (x? = 0.33 ± 0.33 SE, P = 0.0000). Although this is a preliminary study, it seems likely that Green and Golden Bell Frog and Large‐footed Myotis would gain mutual benefit from wetlands that are constructed to be permanent, that are Gambusia free, low in aquatic vegetation coverage, and are located in close to suitable roosting habitat for Large‐footed Myotis. We encourage adaptive aquatic vegetation removal for Green and Golden Bell frog as this may have benefits for Large‐footed Myotis. The evidence suggests that the former may be a suitable umbrella species for the latter.  相似文献   

8.
The sky islands of southeastern Arizona (AZ) mark a major transition zone between tropical and temperate biota and are considered a neglected biodiversity hotspot. Dispersal ability and host plant specificity are thought to impact the history and diversity of insect populations across the sky islands. We aimed to investigate the population structure and phylogeography of two pine‐feeding pierid butterflies, the pine white (Neophasia menapia) and the Mexican pine white (Neophasia terlooii), restricted to these “islands” at this transition zone. Given their dependence on pines as the larval hosts, we hypothesized that habitat connectivity affects population structure and is at least in part responsible for their allopatry. We sampled DNA from freshly collected butterflies from 17 sites in the sky islands and adjacent high‐elevation habitats and sequenced these samples using ddRADSeq. Up to 15,399 SNPs were discovered and analyzed in population genetic and phylogenetic contexts with Stacks and pyRAD pipelines. Low genetic differentiation in N. menapia suggests that it is panmictic. Conversely, there is strong evidence for population structure within N. terlooii. Each sky island likely contains a population of N. terlooii, and clustering is hierarchical, with populations on proximal mountains being more related to each other. The N. menapia habitat, which is largely contiguous, facilitates panmixia, while the N. terlooii habitat, restricted to the higher elevations on each sky island, creates distinct population structure. Phylogenetic results corroborate those from population genetic analyses. The historical climate‐driven fluxes in forest habitat connectivity have implications for understanding the biodiversity of fragmented habitats.  相似文献   

9.
Reproductive isolation is central to the speciation process, and cases where the strength of reproductive isolation varies geographically can inform our understanding of speciation mechanisms. Although generally treated as separate species, Black‐capped chickadees (Poecile atricapillus) and Carolina chickadees (P. carolinensis) hybridize and undergo genetic introgression in many areas where they come into contact across the eastern United States and in the northern Appalachian Mountains. The Great Smoky Mountains harbor the last large breeding population of atricapillus in the southern Appalachians, isolated from the species’ main range by nearly 200 km. This population is believed to be reproductively isolated from local carolinensis due to an unusual, behaviorally mediated elevational range gap, which forms during the breeding season and may function as an incipient reproductive isolating mechanism. We examined the effectiveness of this putative isolating mechanism by looking for genetic introgression from carolinensis in Great Smoky Mountain atricapillus. We characterized this population and parental controls genetically using hundreds of amplified fragment length polymorphism (AFLP) loci as well as mitochondrial DNA (mtDNA) sequence data from cytochrome‐b. Great Smoky Mountain atricapillus have experienced nuclear genetic introgression from carolinensis, but at much lower levels than other populations near the hybrid zone to the north. No mitochondrial introgression was detected, in contrast to northern contact areas. Thus, the seasonal elevational range gap appears to have been effective in reducing gene flow between these closely related taxa.  相似文献   

10.
《Mammalian Biology》2014,79(4):268-276
The Balkans are one of the last large refugia for brown bear (Ursus arctos) populations in Europe, and Bulgaria, in particular, contains relatively large areas of suitable brown bear habitat and a potential population of more than 600 individuals. Despite this, the majority of brown bear research remains focused on bear populations in Central and Western Europe. We provide the first assessment of genetic population structure of brown bears in Bulgaria by analysing tissue samples (n = 16) as well as samples collected with noninvasive genetic methods, including hair and faecal samples (n = 189 and n = 163, respectively). Sequence analysis of a 248 base pair fragment of the mitochondrial control region showed that two highly divergent mitochondrial European brown bear lineages form a contact zone in central Bulgaria. Furthermore, the analysis of 13 polymorphic microsatellite markers identified 136 individuals and found substantial genetic variability (He = 0.74; NA = 8.9). The combination of both genetic markers revealed the presence of weak genetic substructure in the study area with considerable degrees of genetic admixture and the likely presence of migration corridors between the two subpopulation in the Rhodope Mountains and Stara Planina as evidenced from the genetic detection of two male long-distance dispersers. A detailed assessment from densely collected samples in the Rhodope Mountains resulted in a population size estimate of 315 (95% CI = 206–334) individuals, indicating that not all available habitat is presently occupied by bears in this region. Efficient management plans should focus on preserving connectivity of suitable habitats in order to maintain gene flow between the two Bulgarian brown bear subpopulations.  相似文献   

11.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

12.
Changes in ecological conditions can induce changes in behavior and demography of wild organisms, which in turn may influence population dynamics. Black brant (Branta bernicla nigricans) nesting in colonies on the Yukon–Kuskokwim Delta (YKD) in western Alaska have declined substantially (~50%) since the turn of the century. Black brant are herbivores that rely heavily on Carex subspathacea (Hoppner's sedge) during growth and development. The availability of C. subspathacea affects gosling growth rates, which subsequently affect pre‐ and postfledging survival, as well as size and breeding probability as an adult. We predicted that long‐term declines in C. subspathacea have affected gosling growth rates, despite the potential of behavior to buffer changes in food availability during brood rearing. We used Bayesian hierarchical mixed‐effects models to examine long‐term (1987–2015) shifts in brant behavior during brood rearing, forage availability, and gosling growth rates at the Tutakoke River colony. We showed that locomotion behaviors have increased (β = 0.05, 95% CRI: 0.032–0.068) while resting behaviors have decreased (β = ?0.024, 95% CRI: ?0.041 to ?0.007), potentially in response to long‐term shifts in forage availability and brood density. Concurrently, gosling growth rates have decreased substantially (β = ?0.100, 95% CRI: ?0.191 to ?0.016) despite shifts in behavior, mirroring long‐term declines in the abundance of C. subspathacea (β = ?0.191, 95% CRI: ?0.355 to ?0.032). These results have important implications for individual fitness and population viability, where shifts in gosling behavior putatively fail to mitigate long‐term declines in forage availability.  相似文献   

13.
Understanding genetic diversity patterns of endangered species is an important premise for biodiversity conservation. The critically endangered salamander Andrias davidianus, endemic to central and southern mainland in China, has suffered from sharp range and population size declines over the past three decades. However, the levels and patterns of genetic diversity of A. davidianus populations in wild remain poorly understood. Herein, we explore the levels and phylogeographic patterns of genetic diversity of wild‐caught A. davidianus using larvae and adult collection with the aid of sequence variation in (a) the mitochondrial DNA (mtDNA) fragments (n = 320 individuals; 33 localities), (b) 19 whole mtDNA genomes, and (c) nuclear recombinase activating gene 2 (RAG2; n = 88 individuals; 19 localities). Phylogenetic analyses based on mtDNA datasets uncovered seven divergent mitochondrial clades (A–G), which likely originated in association with the uplifting of mountains during the Late Miocene, specific habitat requirements, barriers including mountains and drainages and lower dispersal ability. The distributions of clades were geographic partitioned and confined in neighboring regions. Furthermore, we discovered some mountains, rivers, and provinces harbored more than one clades. RAG2 analyses revealed no obvious geographic patterns among the five alleles detected. Our study depicts a relatively intact distribution map of A. davidianus clades in natural species range and provides important knowledge that can be used to improve monitoring programs and develop a conservation strategy for this critically endangered organism.  相似文献   

14.
A seminatural, factorial‐design experiment was used to quantify dynamics of the pathogen Mycoplasma agassizii and upper respiratory tract disease in the Mojave desert tortoise (Gopherus agassizii) over 2 years. Groups of initially healthy animals were separated into serologically positive (seropositive), seronegative, and artificially infected groups and paired into 23 pens. We found no evidence of long‐term immune protection to M. agassizii or of immunological memory. Initially seronegative, healthy tortoises experienced an equal amount of disease when paired with other seronegative groups as when paired with seropositive and artificially infected groups—suggesting that recrudescence is as significant as transmission in introducing disease in individuals in this host–pathogen system. Artificially infected groups of tortoises showed reduced levels of morbidity when paired with initially seronegative animals—suggesting either a dilution effect or a strong effect of pathogen load in this system. Physiological dynamics within the host appear to be instrumental in producing morbidity, recrudescence, and infectiousness, and thus of population‐level dynamics. We suggest new avenues for studying diseases in long‐lived ectothermic vertebrates and a shift in modeling such diseases.  相似文献   

15.
Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north–south population differentiation. We investigated more than 67‐K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric‐Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome‐wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long‐term separation among population clusters.  相似文献   

16.
Many animals aggregate into organized temporary or stable groups under the influence of biotic and abiotic factors, and some studies have shown the influence of habitat features on animal aggregation. This study, conducted from 2002 to 2004 in the Dzanga-Ndoki National Park, Central African Republic, studied a herd of forest buffaloes (Syncerus caffer nanus) to determine whether spatial aggregation patterns varied by season and habitat. Our results show that both habitat structure and season influenced spatial aggregation patterns. In particular, in open habitats such as clearings, the group covered a larger area when resting and was more rounded in shape compared to group properties noted in forest during the wet season. Moreover, forest buffaloes had a more aggregated spatial distribution when resting in clearings than when in the forest, and individual positions within the herd in the clearing habitat varied with age and sex. In the clearings, the adult male (n = 24) was generally, on most occasions, located in the centre of the herd (n = 20), and he was observed at the border only four times. In contrast, females (n = 80) occupied intermediate (n = 57), peripheral (n = 14) and central positions (n = 9) within the group. Juveniles (n = 77) also occurred in intermediate (n = 64) and peripheral positions (n = 13). Based on these results, we concluded that habitat characteristics and social behaviour can have relevant effects on the spatial distribution of animals within a group.  相似文献   

17.
Black‐breasted Pufflegs (Eriocnemis nigrivestis) are hummingbirds endemic to Ecuador and are considered critically endangered because of their limited distribution, a population estimated at fewer than 1000 individuals, and ongoing habitat degradation. From November 2013 to June 2016, we examined the foraging preferences of these hummingbirds using a combination of direct observations, time‐lapse cameras, and motion‐detection software. We first identified 21 species of ornithophilous plants distributed among five sites in the northwestern flanks of the Pichincha volcano in northwest Ecuador. We then monitored these plant species using time‐lapse cameras and recorded 144 visits by Black‐breasted Pufflegs to seven of the 21 species. Most visits (128 of 144 visits, 89%) were to just two species of plants, Macleania rupestris and Palicourea fuchsioides, the latter of which is also an endemic and threatened species. In addition, Black‐breasted Pufflegs were only observed in the most pristine habitats. Given the potential negative effects of climate change for species in the tropical Andes plus the possible loss and degradation of habitat resulting from human activities, efforts are needed to conserve habitats currently used by Black‐breasted Pufflegs, recover degraded habitats, and connect isolated patches of suitable habitat. Our results concerning species of flowering plants used most by Black‐breasted Pufflegs (P. fuchsioides and M. rupestris) should help guide any habitat restoration initiatives.  相似文献   

18.
19.
Speciation is the result of an accumulation of reproductive barriers between populations, but pinpointing the factors involved is often difficult. However, hybrid zones can form when these barriers are not complete, especially when lineages come into contact in intermediate or modified habitats. We examine a hybrid zone between two closely related riverine turtle species, Sternotherus depressus and S. peltifer, and use dual‐digest RAD sequencing to understand how this hybrid zone formed and elucidate genomic patterns of reproductive isolation. First, the geographical extent and timing of formation of the hybrid zone is established to provide context for understanding the role of extrinsic and intrinsic reproductive isolating mechanisms in this system. The strength of selection on taxon‐specific contributions to maintenance of the hybrid zone is then inferred using a Bayesian genomic cline model. These analyses identify a role for selection inhibiting introgression in some genomic regions at one end of the hybrid zone and promoting introgression in many loci at the other. When selective pressures necessary to generate outliers to the genomic cline are considered with the geographical and temporal context of this hybrid zone, we conclude that habitat‐specific selection probably limits introgression from S. depressus to S. peltifer in the direction of river flow. However, selection is mediating rapid, unidirectional introgression from S. peltifer to S. depressus, which is probably facilitated by anthropogenic habitat alteration. These findings indicate a potentially imminent threat of population‐level genomic extinction for an already imperiled species due to ongoing human‐caused habitat alteration.  相似文献   

20.
Life‐history theory suggests species that typically have a large number of offspring and high adult mortality may make decisions that benefit offspring survival in exchange for increased adult risks. Such behavioral adaptations are essential to understanding how demographic performance is linked to habitat selection during this important life‐history stage. Though studies have illustrated negative fitness consequences to attendant adults or potential fitness benefits to associated offspring because of adaptive habitat selection during brood rearing, equivocal relationships could arise if both aspects of this reproductive trade‐off are not assessed simultaneously. To better understand how adaptive habitat selection during brood rearing influences demographics, we studied the brood survival, attendant parental survival, and space use of two sympatric ground‐nesting bird species, the northern bobwhite (hereafter: “bobwhite”; Colinus virgininanus) and scaled quail (Callipepla squamata). During the 2013–2014 breeding seasons, we estimated habitat suitability across two grains (2 m and 30 m) for both species and determined how adult space use of these areas influenced individual chick survival and parental risk. We found the proportion of a brood's home range containing highly suitable areas significantly increased bobwhite chick survival (β = 0.02, SE = 0.006). Additionally, adult weekly survival for bobwhite was greater for individuals not actively brooding offspring (0.9716, SE = 0.0054) as compared to brooding adults (0.8928, SE = 0.0006). Conversely, brood habitat suitability did not influence scaled quail chick survival during our study, nor did we detect a survival cost for adults that were actively brooding offspring. Our research illustrates the importance of understanding life‐history strategies and how they might influence relationships between adaptive habitat selection and demographic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号