首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat choice often has strong effects on performance and fitness. For many animals, optimal habitats differ across age or size classes, and individuals shift habitat use through ontogeny. Although many studies document ontogenetic habitat shifts for various taxa, most are observational and do not identify the causal factor of size‐specific habitat variation. Field observations of the brown anole lizard (Anolis sagrei) show that juveniles perch on shorter and thinner vegetation than adults. We hypothesized that this variation is due to adult males forcing smaller juveniles to less preferred habitat. To test this assertion, we manipulated adult male densities in mesh enclosures with artificial trees to examine the response of juvenile microhabitat choice. We found that adult male density had strong effects on juvenile perch height, perch width, and substrate use, suggesting that age‐class competition contributes to the observed ontogenetic differences in habitat choice. We also found that time of day significantly affected juvenile perch height and substrate use. In many cases, our results suggest that juveniles distance themselves from adults using different microhabitats from those used in our control ‘no‐adult’ treatment. However, these findings were often body size dependent and varied depending upon time of day. This study highlights the complexity of juvenile perching behavior and demonstrates the role of intraspecific interactions in shaping habitat use by juvenile animals.  相似文献   

2.
The idea that traits linked to individual fitness may differ between males and females was tested in the desert funnel-web spider,Agelenopsis aperta. The study entailed comparison of juvenile male and female behavior with respect to three traits previously shown to be linked to female body mass and ultimately to individual female fitness: habitat discrimination, territorial behavior, and agonistic behavior. As juveniles, male and female spiders behave similarly: they utilize the same habitat cues in locating web sites, maintain similar territory sizes, and exhibit the same behavior patterns in territorial disputes. Like females, males that obtain the highest-quality web sites achieve a greater body mass and are more likely to survive to maturity.  相似文献   

3.
Temporal patterns of natural and sexual selection on male badge size and body traits were studied in a population of house sparrows, Passer domesticus. Badge size was a heritable trait as revealed by a significant father-son regression. Survival during autumn dispersal and winter was not related to badge size or body traits in yearling male house sparrows. Badges that signal dominance status were affected positively by directional selection for mating. Adult male house sparrows suffered an opposing selection pressure on badge size during autumn. Contrary to males, female house sparrows did not experience significant directional or stabilizing selection on any body trait. Directional sexual selection on male badge size due to female choice moves male sparrows away from their survival optimum. Opposing directional natural selection on badge size due to autumn mortality caused by predation maintains a stable badge size.  相似文献   

4.
The maintenance of genetic variation in traits under strong sexual selection is a longstanding problem in evolutionary biology. The genic capture model proposes that this problem can be explained by the evolution of condition dependence in exaggerated male traits. We tested the predictions that condition dependence should be more pronounced in male sexual traits and that genetic variance in expression of these traits should increase under stress as among‐genotype variation in overall condition is exposed. Genetic variance in female and nonsexual traits should, by contrast, be similar across environments as a result of stabilizing selection on trait expression. The relationship between the degree of sexual dimorphism, condition dependence and additive genetic variance (Va) was assessed for two morphological traits (body size and relative fore femur width) affecting male mating success in the black scavenger fly Sepsis punctum (Diptera: Sepsidae) and for development time (a nonsexual trait often correlated with body size). We compared trait expression between the sexes for two cross‐continental populations that differ in degree of sexual dimorphism (Ottawa and Zurich). Condition dependence was indeed most pronounced in males of the strongly dimorphic Zurich population (males larger), and Va was similar for males and females unless the trait was strongly sex specific and condition dependent. Contrary to prediction, however, Va primarily increased under food limitation in both sexes, and genetic variance in fore femur width was low to nil, perhaps depleted by putatively strong sexual selection. Solely for body size of Zurich males, Va increased more in males than females at limited food, in accordance with the predictions of the genic capture model. Overall therefore, quantitative genetic evidence in support of the model was inconsistent and weak at best.  相似文献   

5.
Parental care and sexual selection are highly interrelated. Understanding the evolution of sex‐specific patterns of parental care and sexual selection is a major focus of current evolutionary ecology research and requires empirical studies that simultaneously quantify components of both parental care and sexual selection in a single species. In this study, we quantify the dynamics of paternal care and sexual selection in the giant water bug Belostoma lutarium. Specifically, we examined (1) which sex potentially experiences sexual selection, (2) which traits, if any, are associated with attaining a mate by males and/or females (i.e. which traits are potentially under selection), and (3) which male and female traits, if any, relate to paternal care and offspring survival. Our findings suggest that (1) males are likely the choosier sex and that heavier females are more likely to mate than smaller females, (2) that female body weight is under selection if female weight is a trait that is stable within a given individual and (3) body size is sexually dimorphic, with females being the larger sex in this species. There was no evidence of male or female traits being linked to offspring survival in this species, although this is potentially due to the lack of egg predators in our study. We discuss our findings in relation to the evolution of sex roles and future avenues of research in this species.  相似文献   

6.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

7.
Traditional views of sexual selection assumed that male–male competition and female mate choice work in harmony, selecting upon the same traits in the same direction. However, we now know that this is not always the case and that these two mechanisms often impose conflicting selection on male sexual traits. Cuticular hydrocarbons (CHCs) have been shown to be linked to both social dominance and male attractiveness in several insect species. However, although several studies have estimated the strength and form of sexual selection imposed on male CHCs by female mate choice, none have established whether these chemical traits are also subject to sexual selection via male–male competition. Using a multivariate selection analysis, we estimate and compare sexual selection exerted by male–male competition and female mate choice on male CHC composition in the broad‐horned flour beetle Gnatocerus cornutus. We show that male–male competition exerts strong linear selection on both overall CHC abundance and body size in males, while female mate choice exerts a mixture of linear and nonlinear selection, targeting not just the overall amount of CHCs expressed but the relative abundance of specific hydrocarbons as well. We discuss the potential implications of this antagonistic selection with regard to male reproductive success.  相似文献   

8.
Sexual size dimorphism of adults proximately results from a combination of sexually dimorphic growth patterns and selection on growing individuals. Yet, most studies of the evolution of dimorphism have focused on correlates of only adult morphologies. Here we examined the ontogeny of sexual size dimorphism in an isolated population of the house finch (Carpodacus mexicanus). Sexes differed in growth rates and growth duration; in most traits, females grew faster than males, but males grew for a longer period. Sexual dimorphism in bill traits (bill length, width, depth) and in body traits (wing, tarsus, and tail length; mass) developed during different periods of ontogeny. Growth of bill traits was most different between sexes during the juvenile period (after leaving the nest), whereas growth of body traits was most sexually dimorphic during the first few days after hatching. Postgrowth selection on juveniles strongly influenced sexual dimorphism in all traits; in some traits, this selection canceled or reversed dimorphism patterns produced by growth differences between sexes. The net result was that adult sexual dimorphism, to a large degree, was an outcome of selection for survival during juvenile stages. We suggest that previously documented fast and extensive divergence of house finch populations in sexual size dimorphism may be partially produced by distinct environmental conditions during growth in these populations.  相似文献   

9.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

10.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Male genital morphology in insects and arachnids is characterized by static hypoallometry and low intrapopulational levels of phenotypic variation relative to other male traits. The one-size-fits-all model of genital evolution attributes these patterns to stabilizing sexual selection. This model relies on the assumption that the observed patterns of variation and allometry reflect the form of sexual selection acting these traits. We test this by examining the patterns of scaling and trait variation for a set of genitalic and somatic morphological traits in male water striders (Aquarius remigis). This suite of traits is of particular interest because previous work has shown that the genitalic traits are under strong directional selection whereas the somatic traits are under either weak directional or stabilizing selection. Because the selection regime for these traits is known, we can, for the first time, test the purported relationship between trait variation, scaling, and the form of sexual selection. We show that the patterns of variation and scaling of these traits differ sharply from those predicted for traits experiencing strong directional sexual selection. Specifically, the male genital structures show static hypoallometry and low intrapopulational levels of phenotypic variation relative to other male traits, in spite of consistent, strong, directional sexual selection. These scaling relationships and levels of variation are typical of genital traits in other insect species, where they have been presumed to reflect stabilizing sexual selection. Our data clearly refute the assumption of the one-size-fits-all hypothesis that hypoallometric scaling of genitalic traits implies stabilizing selection. We discuss the implications of this finding and propose future directions for improving our current understanding of genital evolution in arthropods.  相似文献   

12.
1. Life history theory generally predicts a trade-off between shortjuvenile development and large adult size, assuming invariant growth rates within species. This pivotal assumption has been explicitly tested in few organisms. 2. We studied ontogeny in 13 populations of Omocestus viridulus grasshoppers under common garden conditions. High-altitude populations, facing short growing seasons and thus seasonal time constraints, were found to grow at a similar rate to low altitude conspecifics. 3. Instead, high-altitude grasshoppers evolved faster development, and the correlated change in body size led to an altitudinal size cline mediating a trade-off with female fecundity. 4. An additional juvenile stage occurred in low- but not high-altitude females. This difference is probably due to the evolution of lowered critical size thresholds in high-altitude grasshoppers to accelerate development. 5. We found a strikingly lower growth rate in males than females that we interpret as the outcome of concurrent selection for protandry and small male size. 6. Within populations, large individuals developed faster than small individuals, suggesting within-population genetic variation in growth rates. 7. We provide evidence that different time constraints (seasonal, protandry selection) can lead to different evolutionary responses in intrinsic growth, and that correlations among ontogenetic traits within populations cannot generally be used to predict life history adaptation among populations. Moreover, our study illustrates that comparisons of ontogenetic patterns can shed light on the developmental basis underlying phenotypic evolution.  相似文献   

13.
A species' mating system sets limits on the strength of sexual selection. Sexual selection is widespread in dioecious species, but is less well documented in hermaphrodites, and may be less important. We used four highly polymorphic microsatellite markers to assign paternity to broods of the hermaphroditic eastern Pacific volcano barnacle Tetraclita rubescens. These data were used to describe the species' mating system and to examine factors affecting male reproductive success. Tetraclita can sire broods over distances of 11.2 cm, but proximity to the sperm recipient had a highly significant effect on the probability of siring success. There was no effect of body size or the mass of male reproductive tissues on siring success. Broods showed relatively low frequencies of multiple paternity; even at high densities, 75% of broods had only one father. High frequencies of single‐paternity broods imply either that this species does not compete via sperm displacement, or that sperm displacement is extremely effective, potentially explaining the lack of a positive relationship between male investment and paternity. In addition, there was low variance in siring success among individuals, suggesting a lack of strong sexual selection on male traits. Low variance among sires and the strong effect of proximity are probably driven by the unusual biology of a sessile copulating species.  相似文献   

14.
The expression of secondary sexual traits in females has often been attributed to a correlated response to selection on male traits. In rare cases, females have secondary sexual traits that are not homologous structures to secondary sexual traits in males and are thus less likely to have evolved in females because of correlated selection. In this study, we used the dung beetle Onthophagus sagittarius, a species with sex‐specific horns, to examine the environmental and quantitative genetic control of horn expression in males and females. Offspring subjected to different brood mass manipulations (dung addition/removal) were found to differ significantly in body size. Brood mass manipulation also had a significant effect on the length of male horns; however, female horn length was found to be relatively impervious to the treatment, showing stronger patterns of additive genetic variance than males. We found no correlations between horn expression in males and females. We therefore conclude that the horns of O. sagittarius females are unlikely to result from genetic correlations between males and females. Rather, our data suggest that they may be under independent genetic control.  相似文献   

15.
Different animal intraspecific classes commonly differ in their prey selection. Such differences in feeding ecology are thought to reduce resource competition between classes, but other factors (i.e. behavioural, morphological, and physiological differences) also contribute to this widespread phenomenon. Although several studies have correlated the size of the feeding apparatus with prey selection in many animals, few studies have examined how the shape of the feeding apparatus is related to prey selection. Furthermore, even though the dietary regimen of many animals changes during ontogeny, few studies have examined how shape changes in the feeding apparatus may be related to these ontogenetic dietary shifts. Here we address these issues by examining how head shape, head size and prey selection change over ontogeny in adult males, adult females and juveniles of the cottonmouth snake Agkistrodon piscivorus . Our scaling data for head characteristics showed that all head measurements in adult male and female A. piscivorus scaled with significant negative allometry, whereas juvenile head measurements typically scaled isometrically, except for head volume (positive) and head length (negative). Thus, juveniles have relatively broad and high, but short, heads. Large adult male and female A. piscivorus have relatively small head dimensions overall. Thus, juveniles appear to undergo a rapid change in head volume, which subsequently slows considerably as sexual maturity is achieved. However, our multivariate analysis of size-adjusted head dimensions showed that juveniles differed only slightly in their head shape compared with adult male and female A. piscivorus . In general, prey size increased with snake size across all age and sex groups, but an ontogenetic shift in prey type was not detected in either males or females.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 151–159.  相似文献   

16.
We compare morphological characteristics of male and female Barisia imbricata, Mexican alligator lizards, and find that mass, head length, coloration, incidence of scars from conspecifics, tail loss, and frequency of bearing the color/pattern of the opposite sex are all sexually dimorphic traits. Overall size (measured as snout–vent length), on the other hand, is not different between the two sexes. We use data on bite scar frequency and fecundity to evaluate competing hypotheses regarding the selective forces driving these patterns. We contend that sexual selection, acting through male‐male competition, may favor larger mass and head size in males, whereas large females are likely favored by natural selection for greater fecundity. In addition, the frequency of opposite‐sex patterning in males versus females may indicate that the costs of agonistic interactions among males are severe enough to allow for an alternative mating strategy. Finally, we discuss how sexual and natural selective forces may interact to drive or mask the evolution of sexually dimorphic traits.  相似文献   

17.
Understanding temporal variation in selection in natural populations is necessary to accurately estimate rates of divergence and macroevolutionary processes. Temporal variation in the strength and direction of selection on sex‐specific traits can also explain stasis in male and female phenotype and sexual dimorphism. I investigated changes in strength and form of viability selection (via predation by wasps) in a natural population of male and female tree crickets over 4 years. I found that although the source of viability stayed the same, viability selection affected males and females differently, and the strength, direction and form of selection varied considerably from year to year. In general, males experienced significant linear selection and significant selection differentials more frequently than females, and different male traits experienced significant linear selection each year. This yearly variation resulted in overall weak but significant convex selection on a composite male trait that mostly represented leg size and wing width. Significant selection on female phenotype was uncommon, but when it was detected, it was invariably nonlinear. Significant concave selection on traits representing female body size was observed in some years, as the largest and smallest females were preyed on less (the largest may have been too heavy for flying wasps to carry). Viability selection was significantly different between males and females in 2 of 4 years. Although viability selection via predation has the potential to drive phenotypic change and sexual dimorphism, temporal variation in selection may maintain stasis.  相似文献   

18.
Theory predicts that costly secondary sexual traits will evolve heightened condition dependence, and many studies have reported strong condition dependence of signal and weapon traits in a variety of species. However, although genital structures often play key roles in intersexual interactions and appear to be subject to sexual or sexually antagonistic selection, few studies have examined the condition dependence of genital structures, especially in both sexes simultaneously. We investigated the responses of male and female genital structures to manipulation of larval diet quality (new versus once‐used mung beans) in the bruchid seed beetle Callosobruchus maculatus. We quantified effects on mean relative size and static allometry of the male aedeagus, aedeagal spines, flap and paramere and the female reproductive tract and bursal spines. None of the male traits showed a significant effect of diet quality. In females, we found that longer bursal spines (relative to body size) were expressed on low‐quality diet. Although the function of bursal spines is poorly understood, we suggest that greater bursal spine length in low‐condition females may represent a sexually antagonistic adaptation. Overall, we found no evidence that genital traits in C. maculatus are expressed to a greater extent when nutrients are more abundant. This suggests that, even though some genital traits appear to function as secondary sexual traits, genital traits do not exhibit heightened condition dependence in this species. We discuss possible reasons for this finding.  相似文献   

19.
We evaluated whether morphological traits in capelin, Mallotus villosus, that appear to be sexually selected (pectoral fin, pelvic fin, anal fin, lateral ridge) were larger and more variable in males than females compared with naturally selected morphological traits (eyes, dorsal fin). Photographs were obtained of 136 capelin captured at two spawning sites and standardised measurements were taken of six morphological traits. Males had larger traits than females for a given body size and this was most pronounced in the traits thought to be sexually selected. Body size explained much of the variation in female traits but less variation in male traits, suggesting alternative selection pressures are involved. We suggest that larger male body size aids in endurance rivalry and sexually dimorphic traits help males to remain in physical contact with females while spawning on the beach.  相似文献   

20.
Sexual selection theory predicts that, when body size is correlated with fecundity, there should be fitness advantages for mate choice of the largest females. Moreover, because larger males are expected to monopolise the largest females, this should result in an assortative mating based on body size. Although such patterns could be expected in both explosive and prolonged breeders, non‐assortative mating should be more widespread in species under time constraints. However, patterns of sexual selection are largely unexplored in explosive breeding species, and contrasting patterns have been found previously. We expect that the active choice of partners may be particularly risky when the time period during which sexual partners are available is severely limited. Therefore, to avoid missing an entire reproductive act, males and females should pair irrespective of traits, such as body size. We tested this hypothesis by investigating the mating patterns of the Pacific horned toad, Ceratophrys stolzmanni, a short‐lived fossorial species inhabiting Neotropical dry forests. This species is particularly adequate to test our prediction because it reproduces explosively over the course of a single night per year. Although the number of eggs laid was proportional to the size of females, and individuals of both sexes showed variation in body size, there was no assortative mating based either on size, body condition or age of mates. Egg size was not influenced by either female size or clutch size. The larger body size of females compared to males is likely due to fecundity selection, that is, the selective pressure that enhances reproductive output. Although we cannot dismiss the possibility that individuals could select their partners based on other criteria than those related to size or age, the results fit well our prediction, showing that the explosive breeding makes improbable an active choice of partners in both sexes and therefore favours a random mating pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号