首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A set of expressed sequence tag (EST) simple sequence repeat (SSR) markers were developed and characterized using next‐generation sequencing technology for the genus Diabelia (Caprifoliaceae). De novo assembly of RNA‐seq reads resulted in 58 669 contigs with the N50 length of 1211 bp. A total of 2746 contigs were identified to harbor SSR motifs, of which 48 primer pairs were designed and 11 were shown to be polymorphic across three morphospecies of Diabelia. When evaluated with 30 individuals, the number of alleles per locus ranged from 2 to 11 and the expected heterozygosity varied from 0.399 to 0.873, respectively. Distance‐based clustering indicated that the EST‐SSR markers can provide sufficient power to distinguish the three species (or populations). These markers will be useful for evaluating the range‐wide genetic diversity of each species and examining genetic divergence and gene flow between the three species.  相似文献   

4.
The advent of next‐generation sequencing (NGS) has dramatically changed bacterial typing technologies, increasing our ability to differentiate bacterial isolates. Despite it is now possible to sequence a bacterial genome in a few days and at reasonable costs, most genetic analyses do not require whole‐genome sequencing, which also remains impractical for large population samples due to the cost of individual library preparation and bioinformatics. More traditional sequencing approaches, however, such as MultiLocus Sequence Typing (mlst ) are quite laborious and time‐consuming, especially for large‐scale analyses. In this study, a genotyping approach based on restriction site‐associated (RAD) tag sequencing, 2b‐RAD, was applied to characterize Listeria monocytogenes strains. To verify the feasibility of the method, an in silico analysis was performed on 30 available complete genomes. For the same set of strains, in silico mlst analysis was conducted as well. Subsequently, 2b‐RAD and mlst analyses were experimentally carried out on 58 isolates collected from food samples or food‐processing sites. The obtained results demonstrate that 2b‐RAD predicts mlst types and often provides more detailed information on population structure than mlst . Moreover, the majority of variants differentiating identical sequence type isolates mapped against accessory fragments, thus providing additional information to characterize strains. Although mlst still represents a reliable typing method, large‐scale studies on molecular epidemiology and public health, as well as bacterial phylogenetics, population genetics and biosafety could benefit of a low cost and fast turnaround time approach such as the 2b‐RAD analysis proposed here.  相似文献   

5.
6.
With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non‐model species. Here, we describe a successful approach to a genome‐wide medium density Single Nucleotide Polymorphism (SNP) panel in a non‐model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP‐chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP‐chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP‐chip to demonstrate the ability of such genome‐wide marker data to detect population sub‐division, and compared these results to similar analyses using microsatellites. The SNP‐chip will be used to map Quantitative Trait Loci (QTL) for fitness‐related phenotypic traits in natural populations.  相似文献   

7.
Microsatellite marker development has been greatly simplified by the use of high‐throughput sequencing followed by in silico microsatellite detection and primer design. However, the selection of markers designed by the existing pipelines depends either on arbitrary criteria, or older studies on PCR success. Based on wet laboratory experiments, we have identified the following factors that are most likely to influence genotyping success rate: alignment score between the primers and the amplicon; the distance between primers and microsatellites; the length of the PCR product; target region complexity and the number of reads underlying the sequence. The QDD pipeline has been modified to include these most pertinent factors in the output to help the selection of markers. Furthermore, new features are also included in the present version: (i) not only raw sequencing reads are accepted as input, but also contigs, allowing the analysis of assembled high‐coverage data; (ii) input data can be both in fasta and fastq format to facilitate the use of Illumina and IonTorrent reads; (iii) A comparison to known transposable elements allows their detection; (iv) A contamination check can be carried out by BLASTing potential markers against the nucleotide (nt) database of NCBI; (v) QDD3 is now also available imbedded into a virtual machine making installation easier and operating system independent. It can be used both on command‐line version as well as integrated into a Galaxy server, providing a user‐friendly interface, as well as the possibility to utilize a large variety of NGS tools.  相似文献   

8.
9.
Microsatellite markers were isolated and characterized for Hopea hainanensis Merrill & Chun, an endangered tree species with scattered distribution in Hainan Island and northern Vietnam. Twenty‐six microsatellite markers were developed based on next‐generation sequencing data and were genotyped by capillary electrophoresis on an ABI 3730xl DNA Analyzer. Twelve markers were found to be polymorphic in H. hainanensis. GENODIVE analyses indicated that the number of alleles ranged from 2 to 6 per locus, and the observed and expected heterozygosity varied from 0 to 0.755 and from 0.259 to 0.779, respectively. Primer transferability was tested with Hopea chinensis Hand.‐Mazz. and Hopea reticulata Tardieu, in which 3 and 7 microsatellite markers were found to be polymorphic, separately. The results showed that H. reticulata and H. hainanensis had similar levels of genetic diversity. A neighbor joining dendrogram clustered all individuals into two major groups, one of which was exclusively constituted by H. hainanensis, while the other consisted of two subgroups, corresponding to H. reticulata and H. chinensis, respectively. The 12 polymorphic microsatellite markers could be applied to study genetic diversity, population differentiation, mating system, and fine‐scale spatial genetic structures of H. hainanensis as well as its close relatives, facilitating the conservation and restoration of these endangered but valuable Hopea species.  相似文献   

10.
In a de novo genotyping‐by‐sequencing (GBS) analysis of short, 64‐base tag‐level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag‐level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635‐line diversity panel were used to infer chromosome‐level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high‐resolution genome analysis and genomic selection in oats. A combined genome‐wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component‐based genome‐wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS‐derived markers facilitate genome analysis and genomic selection in oat.  相似文献   

11.
12.
Analyses of the mitochondrial cox1, the nuclear‐encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo‐nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I–III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo‐nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence–structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.  相似文献   

13.
Despite the importance of polyploidy and the increasing availability of new genomic data, there remain important gaps in our knowledge of polyploid population genetics. These gaps arise from the complex nature of polyploid data (e.g. multiple alleles and loci, mixed inheritance patterns, association between ploidy and mating system variation). Furthermore, many of the standard tools for population genetics that have been developed for diploids are often not feasible for polyploids. This review aims to provide an overview of the state‐of‐the‐art in polyploid population genetics and to identify the main areas where further development of molecular techniques and statistical theory is required. We review commonly used molecular tools (amplified fragment length polymorphism, microsatellites, Sanger sequencing, next‐generation sequencing and derived technologies) and their challenges associated with their use in polyploid populations: that is, allele dosage determination, null alleles, difficulty of distinguishing orthologues from paralogues and copy number variation. In addition, we review the approaches that have been used for population genetic analysis in polyploids and their specific problems. These problems are in most cases directly associated with dosage uncertainty and the problem of inferring allele frequencies and assumptions regarding inheritance. This leads us to conclude that for advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate ‘flexible’ modes of inheritance. In addition, there is a need for more simulation‐based studies that test what kinds of biases could result from both existing and novel approaches.  相似文献   

14.
Despite recent advances in high‐throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club‐legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired‐end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild‐caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high‐throughput sequencing and graph‐based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes.  相似文献   

15.
The European rabbit (Oryctolagus cuniculus) is a domesticated species with one of the broadest ranges of economic and scientific applications and fields of investigation. Rabbit genome information and assembly are available (oryCun2.0), but so far few studies have investigated its variability, and massive discovery of polymorphisms has not been published yet for this species. Here, we sequenced two reduced representation libraries (RRLs) to identify single nucleotide polymorphisms (SNPs) in the rabbit genome. Genomic DNA of 10 rabbits belonging to different breeds was pooled and digested with two restriction enzymes (HaeIII and RsaI) to create two RRLs which were sequenced using the Ion Torrent Personal Genome Machine. The two RRLs produced 2 917 879 and 4 046 871 reads, for a total of 280.51 Mb (248.49 Mb with quality >20) and 417.28 Mb (360.89 Mb with quality >20) respectively of sequenced DNA. About 90% and 91% respectively of the obtained reads were mapped on the rabbit genome, covering a total of 15.82% of the oryCun2.0 genome version. The mapping and ad hoc filtering procedures allowed to reliably call 62 491 SNPs. SNPs in a few genomic regions were validated by Sanger sequencing. The Variant Effect Predictor Web tool was used to map SNPs on the current version of the rabbit genome. The obtained results will be useful for many applied and basic research programs for this species and will contribute to the development of cost‐effective solutions for high‐throughput SNP genotyping in the rabbit.  相似文献   

16.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

17.
Estimating the evolutionary potential of quantitative traits and reliably predicting responses to selection in wild populations are important challenges in evolutionary biology. The genomic revolution has opened up opportunities for measuring relatedness among individuals with precision, enabling pedigree‐free estimation of trait heritabilities in wild populations. However, until now, most quantitative genetic studies based on a genomic relatedness matrix (GRM) have focused on long‐term monitored populations for which traditional pedigrees were also available, and have often had access to knowledge of genome sequence and variability. Here, we investigated the potential of RAD‐sequencing for estimating heritability in a free‐ranging roe deer (Capreolous capreolus) population for which no prior genomic resources were available. We propose a step‐by‐step analytical framework to optimize the quality and quantity of the genomic data and explore the impact of the single nucleotide polymorphism (SNP) calling and filtering processes on the GRM structure and GRM‐based heritability estimates. As expected, our results show that sequence coverage strongly affects the number of recovered loci, the genotyping error rate and the amount of missing data. Ultimately, this had little effect on heritability estimates and their standard errors, provided that the GRM was built from a minimum number of loci (above 7,000). Genomic relatedness matrix‐based heritability estimates thus appear robust to a moderate level of genotyping errors in the SNP data set. We also showed that quality filters, such as the removal of low‐frequency variants, affect the relatedness structure of the GRM, generating lower h2 estimates. Our work illustrates the huge potential of RAD‐sequencing for estimating GRM‐based heritability in virtually any natural population.  相似文献   

18.
Studies of hybridization and introgression and, in particular, the identification of admixed individuals in natural populations benefit from the use of diagnostic genetic markers that reliably differentiate pure species from each other and their hybrid forms. Such diagnostic markers are often infrequent in the genomes of closely related species, and genomewide data facilitate their discovery. We used whole‐genome data from Illumina HiSeqS2000 sequencing of two recently diverged (600,000 years) and hybridizing, avian, sister species, the Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) Sparrow, to develop a suite of diagnostic markers for high‐resolution identification of pure and admixed individuals. We compared the microsatellite repeat regions identified in the genomes of the two species and selected a subset of 37 loci that differed between the species in repeat number. We screened these loci on 12 pure individuals of each species and report on the 34 that successfully amplified. From these, we developed a panel of the 12 most diagnostic loci, which we evaluated on 96 individuals, including individuals from both allopatric populations and sympatric individuals from the hybrid zone. Using simulations, we evaluated the power of the marker panel for accurate assignments of individuals to their appropriate pure species and hybrid genotypic classes (F1, F2, and backcrosses). The markers proved highly informative for species discrimination and had high accuracy for classifying admixed individuals into their genotypic classes. These markers will aid future investigations of introgressive hybridization in this system and aid conservation efforts aimed at monitoring and preserving pure species. Our approach is transferable to other study systems consisting of closely related and incipient species.  相似文献   

19.
A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype–phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole‐genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom® myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high‐density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high‐resolution genomewide information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号