首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
Investigations of breeding ecology of interior least tern (Sternula antillarum athalassos ) and piping plover (Charadrius melodus ) in the Platte River basin in Nebraska, USA , have embraced the idea that these species are physiologically adapted to begin nesting concurrent with the cessation of spring floods. Low use and productivity on contemporary Platte River sandbars have been attributed to anthropomorphically driven changes in basin hydrology and channel morphology or to unusually late annual runoff events. We examined distributions of least tern and piping plover nest initiation dates in relation to the hydrology of the historical central Platte River (CPR ) and contemporary CPR and lower Platte River (LPR ). We also developed an emergent sandbar habitat model to evaluate the potential for reproductive success given observed hydrology, stage–discharge relationships, and sandbar height distributions. We found the timing of the late‐spring rise to be spatially and temporally consistent, typically occurring in mid‐June. However, piping plover nest initiation peaks in May and least tern nest initiation peaks in early June; both of which occur before the late spring rise. In neither case does there appear to be an adaptation to begin nesting concurrent with the cessation of spring floods. As a consequence, there are many years when no successful reproduction is possible because emergent sandbar habitat is inundated after most nests have been initiated, and there is little potential for successful renesting. The frequency of nest inundation, in turn, severely limits the potential for maintenance of stable species subpopulations on Platte River sandbars. Why then did these species expand into and persist in a basin where the hydrology is not ideally suited to their reproductive ecology? We hypothesize the availability and use of alternative off‐channel nesting habitats, like sandpits, may allow for the maintenance of stable species subpopulations in the Platte River basin.  相似文献   

3.
Within riverine systems, headwater populations are hypothesized to harbour higher amounts of genetic distinctiveness than populations in the main stem of a river and display increased genetic diversity in large, downstream habitats. However, these hypotheses were mostly developed with insects and fish, and they have not been tested on many invertebrate lineages. Pleuroceridae gastropods are of particular ecological importance to rivers of eastern North America, sometimes comprising over 90% of macroinvertebrate biomass. Yet, virtually nothing is known of pleurocerid landscape genetics, including whether genetic diversity follows predictions made by hypotheses developed on more mobile species. Moreover, the commonly repeated hypothesis that intraspecific morphological variation in gastropods results from ecophenotypic plasticity has not been well tested on pleurocerids. Using 2bRAD‐seq to discover single nucleotide polymorphisms, we show that the threatened, Cahaba River endemic pleurocerid, Leptoxis ampla, has limited gene flow among populations and that migration is downstream‐biased, conflicting with previous hypotheses. Both tributary and main stem populations harbour unique genomic profiles, and genetic diversity was highest in downstream populations. Furthermore, L. ampla shell morphology was more correlated with genetic differences among individuals and populations than habitat characteristics. We anticipate similar genetic and demographic patterns to be seen in other pleurocerids, and hypotheses about gene flow and population demographics that were based on more mobile taxa often, but not always, apply to freshwater gastropods. From a conservation standpoint, genetic structure of L. ampla populations suggests distinctive genetic diversity is lost with localized extirpation, a phenomenon common across the range of Pleuroceridae.  相似文献   

4.
The accuracy and precision of four single‐sample estimators of effective population size, Ne (heterozygote excess, linkage disequilibrium, Bayesian partial likelihood and sibship analysis) were compared using empirical data (microsatellite genotypes) from multiple natterjack toad (Bufo calamita) populations in Britain (n = 16) and elsewhere in Europe (n = 10). Census size data were available for the British populations. Because toads have overlapping generations, all of these methods estimated the number of effective breeders Nb rather than Ne. The heterozygote excess method only provided results, without confidence limits, for nine of the British populations. Linkage disequilibrium gave estimates for 10 British populations, but only six had finite confidence limits. The Bayesian and sibship methods both produced estimates with finite confidence limits for all the populations. Although the Bayesian method was the most precise, on most criteria (insensitivity to locus number, correlation with other effective and census size estimates and correlation with genetic diversity) the sibship method performed best. The results also provided evidence of genetic compensation in natterjack toads, and highlighted how the relationship between effective size and genetic diversity can vary as a function of geographical scale.  相似文献   

5.
Selecting a sampling design to monitor multiple species across a broad geographical region can be a daunting task and often involves tradeoffs between limited resources and the accurate estimation of population abundance and occurrence. Since the 1950s, biological atlases have been implemented in various regions to document the occurrence of plant and animal species. As next‐generation atlases repeat original surveys, investigators often seek to raise the rigour of atlases by incorporating species abundances. We present a repeatable framework that incorporates existing monitoring data, hierarchical modelling and sampling simulations to augment existing atlas occurrence and breeding status maps with a secondary sampling of species abundances. Using existing information on three bird species with varying abundance and detectability, we evaluated several sampling scenarios for the 2nd Wisconsin Breeding Bird Atlas. In general, we found that most sampling schemes produced accurate mean statewide abundance estimates for species with medium to high abundance and detection probability, but estimates varied significantly for species with low abundance and low detection probability. Our approach provided a statewide point‐count sampling design that: provided precise and unbiased abundance estimates for species of varied prevalence and detectability; ensured suitable spatial coverage across the state and its habitats; and reduced spending on total survey costs. Our framework could benefit investigators conducting atlases and other broad‐scale avian surveys that seek to add systematic, multi‐species sampling for estimating density and abundance across broad geographical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号