首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In fishes, alterations to the natural flow regime are associated with divergence in body shape morphology compared with individuals from unaltered habitats. However, it is unclear whether this morphological divergence is attributable to evolutionary responses to modified flows, or is a result of phenotypic plasticity. Fishes inhabiting arid regions are ideal candidates for studying morphological plasticity as they are frequently exposed to extreme natural hydrological variability. We examined the effect of early exposure to flows on the development of body shape morphology in the western rainbowfish (Melanotaenia australis), a freshwater fish that is native to semiarid northwest Australia. Wild fish were collected from a region (the Hamersley Ranges) where fish in some habitats are subject to altered water flows due to mining activity. The offspring of wild‐caught fish were reared in replicated fast‐flow or slow‐flow channels, and geometric morphometric analyses were used to evaluate variation in fish body shape following 3, 6, 9, and 12 months of exposure. Water flows influenced fish morphology after 6 and 9 months of flow exposure, with fish in fast‐flow environments displaying a more robust body shape than those in slow‐flow habitats. No effect of flow exposure was observed at 3 and 12 months. Fishes also showed significant morphological variation within flow treatments, perhaps due to subtle differences in water flow among the replicate channels. Our findings suggest that early exposure to water flows can induce shifts in body shape morphology in arid zone freshwater fishes. Morphological plasticity may act to buffer arid zone populations from the impacts of anthropogenic activities, but further studies are required to link body shape plasticity with behavioral performance in habitats with modified flows.  相似文献   

2.
Geometric shape analyses were used to study body shape and size variation among populations of the livebearing fish Poecilia vivipara inhabiting the recently formed coastal lagoons of Grussaí and Iquipari in Northern Rio de Janeiro State, Brazil. The largest components of morphological variation among females were between different habitats in the same lagoon, whereas for males there were larger differences between lagoons than between habitats. The shape differences were mostly localized in the head region and midbody, which indicated different patterns of locomotion and foraging behaviour optimized for the habitat experienced by each population. The pattern of size variation was similar to that of size-independent shape variation.  相似文献   

3.
Male poeciliid fishes inseminate females using an intromittent organ called the gonopodium. Here we report on natural variation in gonopodium size both within and between 12 populations of the freshwater fish Brachyrhaphis episcopi (Poeciliidae) in Panama. We show that males from sites with more predatory fish species have, on average, a relatively longer gonopodium than males inhabiting sites with fewer predatory fish. Gonopodium length was not correlated with the site-specific adult sex ratio and the average sex ratio was more strongly female biased at sites with more predatory fish. The gonopodium exhibited lower phenotypic variance than the average for sexually selected traits and it generally showed negative allometry. Our results are similar to those reported for the guppy Poecilia reticulata . Two alternative hypotheses for these findings are discussed. First, that population differences are sexually selected. Second, that they are an incidental consequence of environmental differences between sites. Specifically, that higher water flow rates select for enlarged fin size and stockier bodies in downstream sites where predatory fish are more common.  相似文献   

4.
Performance‐related variation in fitness can manifest as morphological responses to ecological and evolutionary pressures. Eco‐morphological studies often utilize stark binary comparisons, such as lentic to lotic populations of freshwater fishes, to characterize relationships between form and function despite possible complications from confounding factors. In the present study, we compared body shape variation among lotic populations of a stream fish (Cyprinella venusta Girard) to disentangle the influence of ecological and evolutionary drivers of phenotypic change. We assessed the extent to which body shape corresponded to three key environmental factors (mean channel velocity, mean discharge, and mean annual run‐off), phylogeny (mitochondrial DNA divergence), and body size (centroid size). We also examined relationships between these parameters and a fineness index, which is a measure of streamlining and morphological optimization for steady swimming performance. All three environmental variables had some explanatory power, although morphological characteristics were predominantly associated with variation in mean annual run‐off. Phylogeny was also a strong predictor of morphological variation, whereas body size had little predictive power. Populations experiencing higher mean annual run‐off exhibited a shorter base of the dorsal fin, a more slender body and caudal peduncle, a smaller head in both horizontal and vertical dimensions, and a more anterior placement of the eye. With some exceptions, such as variation in jaw length, differences in body shape associated with phylogenetic history were similar to those associated with run‐off. Notably, all clades exhibited parallel responses to variation in run‐off. Populations experiencing high mean annual run‐off approached a hydrodynamic optimum, suggesting a morphology optimized for steady swimming performance. In contrast to previous studies that emphasize the importance of average water velocity, the findings of the present study indicate that morphological variation among populations of stream fishes is tightly linked to more complex aspects of hydrology and evolutionary history. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

5.
As part of a comprehensive genetic evaluation of reproduction in naturally spawning coho salmon, Oncorhynchus kisutch, we examined morphometric variation in captively reared and wild adults from Hood Canal, Washington (U.S.A.) for evidence of differentiation between these groups. We collected captively reared fish as parr from two stocks and reared to adulthood at a freshwater hatchery, maturing in 1995 and 1996; we sampled closely size-matched wild fish as they returned to a neighboring stream in both years. Multivariate analysis of shape variation by Procrustes coordinates, visualized by thin-plate splines, indicated that the captively reared adults were differentiated from the wild fish by sharply reduced sexual dimorphism as well as smaller heads and less hooked snouts, increased trunk depth, larger caudal peduncles, shorter dorsal fins, larger hindbodies and a reduction in body streamlining. The differences between the captively reared and wild fish were similar to but more pronounced than some differences previously reported between hatchery and wild coho salmon. The magnitude and pattern of differences suggested that at least some of them were environmentally induced. Shape variation showed an allometric relationship with variation in body (measured as centroid) size. Morphometric variation was a poor correlate of most spawning behaviors. Nevertheless, our results suggest that the morphometric consequences of captive rearing for mate selection and reproductive activity of spawning fish may limit its effectiveness as a restorative tool.  相似文献   

6.
Understanding population‐level responses to human‐induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic‐level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population‐level differences in morphology persisted in offspring but morphological variation compared with field‐collected individuals was limited to the head region. Populations demonstrated dissimilar flow‐induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.  相似文献   

7.
Adaptive phenotypic divergence can arise when environments vary in ways favoring alternative phenotypic optima. In aquatic habitats, the costs of locomotion are expected to increase with water velocity, generally favoring a more streamlined body and the reduction of traits that produce drag. However, because streamlining in fish may come at the cost of maneuverability, the net benefits of drag reduction can differ not only among habitats, but also among individuals (or classes of individuals) that rely on locomotion for different uses (e.g., males vs. females or adults vs. juveniles). We tested these predictions by exploring relationships among river velocity, body streamlining, ornamental fin size, and male reproductive condition in the steelcolor shiner (Cyprinella whipplei), a small-bodied North American cyprinid. Overall, males in peak reproductive condition (defined by the development of sexually dimorphic tubercles) had less streamlined bodies and larger ornamental fins than males in lower reproductive condition or individuals lacking these secondary sexual characters (females and immature males). There was a relationship between river velocity and body streamlining only for males in peak reproductive condition, but it was in the opposite direction of our predictions: these males were less streamlined in faster rivers. We found only weak support for the prediction that ornamental fin size would be negatively associated with river velocity. Overall, these results suggest either that drag is not an important selective pressure in these habitats, or that the sexual selection advantages of a deep body and large fin compensate any natural selection costs for C. whipplei males. This study highlights the often overlooked diversity of selective pressures acting on streamlining in fishes, and can offer novel insights and predictions allowing a more nuanced understanding of fish ecomorphology.  相似文献   

8.
Divergent natural selection drives a considerable amount of the phenotypic and genetic variation observed in natural populations. For example, variation in the predator community can generate conflicting selection on behavioral, life‐history, morphological, and performance traits. Differences in predator regime can subsequently increase phenotypic and genetic variations in the population and result in the evolution of reproductive barriers (ecological speciation) or phenotypic plasticity. We evaluated morphology and swimming performance in field collected Bronze Frog larvae (Lithobates clamitans) in ponds dominated by predatory fish and those dominated by invertebrate predators. Based on previous experimental findings, we hypothesized that tadpoles from fish‐dominated ponds would have small bodies, long tails, and large tail muscles and that these features would facilitate fast‐start speed. We also expected to see increased tail fin depth (i.e., the tail‐lure morphology) in tadpoles from invertebrate‐dominated ponds. Our results support our expectations with respect to morphology in affecting swimming performance of tadpoles in fish‐dominated ponds. Furthermore, it is likely that divergent natural selection is playing a role in the diversification on morphology and locomotor performance in this system.  相似文献   

9.
The ability to respond flexibly to environmental challenges, for instance by learning or by responding appropriately to novel stimuli, may be crucial for survival and reproductive success. Experiences made during early ontogeny can shape the degree of behavioural flexibility maintained by individuals during later life. In natural habitats, animals are exposed to a multitude of social and non‐social ecological factors during early ontogeny, but their relative influences on future learning ability and behavioural flexibility are only poorly understood. In the cooperatively breeding cichlid Neolamprologus pulcher, we investigated whether early social and predator experiences shape the learning performance, flexibility, and response to novelty of adults. Fish were reared either with or without parents and helpers and with or without perceived predation risk in a full‐factorial experiment. We investigated the influence of these treatments on learning performance and flexibility in a spatial acquisition and reversal learning task. To test for response to novelty, we performed a neophobia test. We found that fish reared with predator experience, but without the presence of older group members outperformed fish with other rearing backgrounds in reversal learning and that individuals, which had been reared in a socially more complex environment together with older group members responded less neophobic toward a novel object than individuals reared among siblings only. Comparative evidence from fish and rats suggests that these developmental effects may be driven by the cues of safety perceived in the presence of guarding parents.  相似文献   

10.
Male genitalia present an extraordinary pattern of rapid divergence in animals with internal fertilization, which is usually attributed to sexual selection. However, the effect of ecological factors on genitalia divergence could also be important, especially so in animals with nonretractable genitalia because of their stronger interaction with the surrounding environment in comparison with animals with retractable genitalia. Here, we examine the potential of a pervasive ecological factor (predation) to influence the length and allometry of the male genitalia in guppies. We sampled guppies from pairs of low‐predation (LP) and high‐predation (HP) populations in seven rivers in Trinidad, and measured their body and gonopodium length. A key finding was that HP adult males do not have consistently longer gonopodia than do LP adult males, as had been described in previous work. However, we did find such divergence for juvenile males: HP juveniles have longer gonopodia than do LP juveniles. We therefore suggest that an evolutionary trend toward the development of longer gonopodia in HP males (as seen in the juveniles) is erased after maturity owing to the higher mortality of mature males with longer gonopodia. Beyond these generalities, gonopodium length and gonopodium allometry were remarkably variable among populations even within a predation regime, thus indicating strong context dependence to their development/evolution. Our findings highlight the complex dynamics of genitalia evolution in Trinidadian guppies.  相似文献   

11.
In viviparous organisms, pregnant females typically experience an increase in body mass and body volume. In this study, the prediction that variation in reproductive traits among populations of viviparous organisms should be related to variation among populations in body shape was tested in the Pacific molly Poecilia butleri, a viviparous fish that inhabits western Mexico and northern Central America. Variation among 10 populations in four reproductive traits was examined: brood size, individual embryo mass, total reproductive allotment and degree of maternal provisioning of nutrients to developing embryos. Variation among these populations in body shape was also examined. Significant variation among populations was observed in both brood size and reproductive allotment but not in embryo mass or degree of maternal provisioning. Significant variation among populations was also observed in body shape. After correcting for female size, however, reproductive traits and body shape were not associated among populations. This suggests that selective pressures acting on reproduction do not necessarily affect morphology and vice versa. Several factors might contribute to this unexpected lack of association between reproductive traits and morphology.  相似文献   

12.
Environmental variation is a potent force affecting phenotypic expression. While freshwater fishes have provided a compelling example of the link between the environment and phenotypic diversity, few studies have been conducted with arid‐zone fishes, particularly those that occur in geographically isolated regions where species typically inhabit intermittent and ephemeral creeks. We investigated morphological variation of a freshwater fish (the western rainbowfish, Melanotaenia australis) inhabiting creeks in the Pilbara region of northwest Australia to determine whether body shape variation correlated with local environmental characteristics, including water velocity, habitat complexity, predator presence, and food availability. We expected that the geographic isolation of creeks within this arid region would result in habitat‐specific morphological specializations. We used landmark‐based geometric morphometrics to quantify the level of morphological variability in fish captured from 14 locations within three distinct subcatchments of a major river system. Western rainbowfish exhibited a range of morphologies, with variation in body depth accounting for a significant proportion (>42%) of the total variance in shape. Sexual dimorphism was also apparent, with males displaying deeper bodies than females. While the measured local habitat characteristics explained little of the observed morphological variation, fish displayed significant morphological differentiation at the level of the subcatchment. Local adaptation may partly explain the geographic patterns of body shape variation, but fine‐scale genetic studies are required to disentangle the effects of genetic differentiation from environmentally determined phenotypic plasticity in body shape. Developing a better understanding of environment–phenotype relationships in species from arid regions will provide important insights into ecological and evolutionary processes in these unique and understudied habitats.  相似文献   

13.
SJ Fu  Z Peng  ZD Cao  JL Peng  XK He  D Xu  AJ Zhang 《PloS one》2012,7(7):e40791
The Wujiang River is a tributary of the upper Yangtze River that shows great variations in its flow regime and habitat condition. Dams have been built along the Wujiang River and have altered the habitats profoundly enough that they may give rise to reproductive isolation. To test whether the swimming performance and morphology of the Chinese hook snout carp (Opsariichthys bidens), varied among habitats and whether the possible differences had a genetic basis, we measured the steady and unsteady swimming performance, external body shape and genetic distance among fish collected from both the main and tributary streams of the upper, middle and lower reaches along the river. We also measured the routine energy expenditure (RMR), maximum metabolic rate (MMR), cost of transport (COT) and calculated the optimal swimming speed. The steady swimming capacity, RMR, MMR and optimal swimming speed were all higher and the COT was lower in the upper reach or tributary streams compared with the lower reach or main stream. However, unsteady swimming performance showed no variation among collecting sites. Flow regimes as suggested by river slope and water velocity were positively correlated with steady swimming performance but not with unsteady swimming performance. Predation stress were significantly related with body morphology and hence energy cost during swimming but not U(crit) value. The fish from only one population (Hao-Kou) showed relatively high genetic differentiation compared with the other populations. Fish from the upper reach or tributary streams exhibited improved steady swimming performance through improved respiratory capacity and lower energy expenditure during swimming at the cost of higher maintenance metabolism. There was no correlation between the steady and unsteady swimming performance at either the population or the individual levels. These results suggest that a trade-off between steady and unsteady swimming does not occur in O. bidens.  相似文献   

14.
The Wujiang River, a tributary of the Three Gorges Reservoir, has many dams along its length. These dams alter the river's natural habitat and produce various flow regimes and degrees of predator stress. To test whether the swimming performance and external body shape of pale chub (Zacco platypus) have changed as a result of alterations in the flow regime and predator conditions, we measured the steady (U crit) and unsteady (fast-start) swimming performances and morphological characteristics of fish collected from different sites along the Wujiang River. We also calculated the maximum respiratory capacity and cost of transport (COT). We demonstrated significant differences in swimming performance and morphological traits among the sampling sites. Steady swimming performance was positively correlated with water velocity and negatively correlated with the abundance of predators, whereas unsteady swimming performance was negatively correlated with water velocity. The body shape was significantly correlated with both swimming performance and ecological parameters. These findings suggested that selection pressure on swimming performance results in a higher U crit and a more streamlined body shape in fast-flow and (or) in habitats with low predator stress and subsequently results in a lower COT. These characteristics were accompanied by a poorer fast-start performance than that of the fish from the slow-flow and (or) high-predator habitats. The divergence in U crit may also be due in part to variation in respiratory capacity.  相似文献   

15.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

16.
The role of environment as a selective agent is well-established. Environment might also influence evolution by altering the expression of genetic variation associated with phenotypes under selection. Far less is known about this phenomenon, particularly its contribution to evolution in novel environments. We investigated how environment affected the evolvability of body size in the threespine stickleback (Gasterosteus aculeatus). Gasterosteus aculeatus is well suited to addressing this question due to the rapid evolution of smaller size in the numerous freshwater populations established following the colonization of new freshwater habitats by an oceanic ancestor. The repeated, rapid evolution of size following colonization contrasts with the general observation of low phenotypic variation in oceanic stickleback. We reared an oceanic population of stickleback under high and low salinity conditions, mimicking a key component of the ancestral environment, and freshwater colonization, respectively. There was low genetic variation for body size under high salinity, but this variance increased significantly when fish were reared under low salinity. We therefore conclude that oceanic populations harbor the standing genetic variation necessary for the evolution of body size, but that this variation only becomes available to selection upon colonization of a new habitat.  相似文献   

17.
Assortative mating is critical for reproductive isolation during speciation; however, the mechanisms underlying mating preferences are often unknown. Assortative mating can be mediated through preferences for condition‐dependent and adaptive (“magic”) traits, but rigorously testing these hypotheses has been impeded by trait covariation in living organisms. We used computer‐generated models to examine the role of body shape in producing association preferences between fish populations undergoing ecological speciation in different habitat types. We demonstrate that body shape can serve as an adaptive trait (variation in head size between populations) and a condition‐dependent signal (variation in abdominal distention among individuals). Female preferences for stimuli varying in only one aspect of body shape uncovered evidence for body shape as a magic trait across population pairs, but no evidence for body shape serving as a condition‐dependent signal. Evolution of preferences only in females from one habitat type as well as stronger preferences in sympatric nonsulfidic as opposed to allopatric nonsulfidic populations suggests that reinforcement may have played a role in producing the observed patterns.  相似文献   

18.
Adaptation of rainbow fish to lake and stream habitats   总被引:3,自引:0,他引:3  
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in lakes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (Ucrit) than stream conspecifics. In M. eachamensis, habitat affected Ucrit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster Ucrit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in Ucrit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and Ucrit phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.  相似文献   

19.
Phylogenetic hierarchies are often composed of younger diverging lineages nested within older diverging lineages. Comparing phenotypic variation among several hierarchical levels can be used to test hypotheses about selection, phenotypic evolution and speciation. Such hierarchical comparisons have only been performed in threespine stickleback, and so here we use a hierarchical pattern of divergences between near-shore littoral and off-shore pelagic habitats to test for selection on the evolution of body form in Lepomis sunfish in lakes. We compare variation in external body form between fish from littoral and pelagic habitats at three levels: among ecomorphs within individual lake populations (intrapopulation), among populations of the same species in different lakes (interpopulation), and between bluegill and pumpkinseed sunfish species (interspecifically). Using geometric morphometric methods, we first demonstrate that interpopulation variation in mean body form of pumpkinseed sunfish varies with the presence of pelagic habitat. We then incorporate these results with existing data in order to test the similarity of phenotypic divergence between littoral and pelagic habitats at different hierarchical levels. Parallel relationships between certain body form traits (head length, caudal length and pectoral length) and habitat occur at all three levels suggesting that selection persistently acts at all levels to diversify these traits and so may contribute to species formation. For other traits (caudal depth and pectoral altitude), divergence between habitats is inconsistent at different hierarchical levels. Thus, nested biological variation in Lepomid body form reflects a history of deterministic selection and historical contingency, and also identifies traits that likely have likely influenced fitness and so serve important functions.  相似文献   

20.
Synopsis Throughout its range, freshwater populations in the Gasterosteus aculeatus species complex display remarkable differentiation of morphology and behavior, much of which reflects differences in ecological conditions among habitats. We first describe the ecological conditions that have led to morphological and behavioral divergence in two common lake types in British Columbia, Canada. Deep, oligotrophic lakes have favored the evolution of slender fish well adapted for feeding on plankton (limnetic, sensu McPhail 1984), whereas shallow, more eutrophic lakes with extensive littoral zones favor fish that are deeper-bodied and well adapted for feeding on benthic invertebrates. The latter forage in large groups that attack nests guarded by males and cannibalize the young within. Courtship in these lakes is relatively inconspicuous, a feature that apparently enhances nest survivorship. In limnetic populations, this form of cannibalism is usually absent and courtship is conspicuous. Because benthic populations tend to have larger bodies and hence, larger gapes than do limnetic fish we suggest that cannibalism may be facilitated by large body size or a correlated trait. We test this by comparing the morphology of populations exhibiting both group cannibalism and a second kind of cannibalism in which solitary females court males, gain access to nests as a consequence, and then cannibalize eggs without spawning. Our results suggest that differences in body size cannot explain variation among populations in cannibalistic tendencies but that body size may affect the effectiveness of cannibalism by females within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号