首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preference‐performance or ‘mother‐knows‐best’ hypothesis states that female insects choose to oviposit on a host plant that increases the performance of their offspring. This positive link between host plant choice and larval performance is especially important for leaf miners with non‐motile larvae that are entirely dependent upon the oviposition choice of the female for host plant location. Preference and performance of the ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillariidae), a specialist on ash trees, Fraxinus spp. (Oleaceae), were tested in a series of laboratory and field experiments. Female C. fraxinella were exposed to two closely related hosts, black ash, Fraxinus nigra Marshall, and green ash, Fraxinus pennsylvanica Marshall var. subintegerrima (Vahl), in oviposition choice and wind tunnel flight experiments to determine which host is most attractive for oviposition. Caloptilia fraxinella females were inconsistent in host choice, yet performance of larvae was greater on green than black ash. In preference studies, C. fraxinella preferred to oviposit on black ash when leaflets were removed from the tree, but preferred intact green ash over black ash seedlings for oviposition and host location in a wind tunnel. In the field, however, more C. fraxinella visited black ash var. ‘Fallgold’ at leaf flush than green ash at the same sites. Age of the ash leaflet also influences oviposition in this leaf miner and females preferred new over old leaflets for oviposition. Performance of C. fraxinella larvae was evaluated in field and laboratory experiments and was greater on green ash than on black ash in both experiments based on larval survival and development time parameters. The stronger oviposition and host location preference in the field for black ash were not linked to enhanced performance of offspring, as green ash was the superior host, supporting higher larval survival and faster development. A stronger host location preference in the wind tunnel for green ash over black ash, however, suggests that under certain circumstances with this moth species, ‘mother (may) know best’.  相似文献   

2.
The endosymbiotic bacterium Wolbachia infects a wide range of arthropods and their relatives. It is an intracellular parasite transmitted through the egg from mother to offspring. Wolbachia can spread and persist through various means of host reproductive manipulation. How these different mechanisms of host manipulation evolved in Wolbachia is unclear. Which host reproductive phenotype is most likely to be ancestral and whether evolutionary transitions between some host phenotypes are more common than others remain unanswered questions. Recent studies have revealed multiple cases where the same Wolbachia strain can induce different reproductive phenotypes in different hosts, raising the question to what degree the induced host phenotype should be regarded as a trait of Wolbachia. In this study, we constructed a phylogenetic tree of Wolbachia and analyzed the patterns of host phenotypes along that tree. We were able to detect a phylogenetic signal of host phenotypes on the Wolbachia tree, indicating that the induced host phenotype can be regarded as a Wolbachia trait. However, we found no clear support for the previously stated hypothesis that cytoplasmic incompatibility is ancestral to Wolbachia in arthropods. Our analysis provides evidence for heterogeneous transition rates between host phenotypes.  相似文献   

3.
The present study evaluated the effectiveness of an aphid‐rearing method devised by Milner in 1981 using Acyrthosiphon pisum and its host plant Vicia faba. In the “agar‐leaf method,” excised leaves of V. faba were attached to the surface of 1% agar gel containing nutrient solution, and test aphids were transferred onto the leaves. Excised leaves grew in size and weight on the agar medium. Fecundity, longevity, body size and developmental time to adulthood were compared between aphids reared using the agar‐leaf method vs. those reared on V. faba seedlings under the same conditions. No significant difference was detected between the two treatments for any of the four parameters, suggesting that the aphids grew and reproduced on excised leaves as successfully as on V. faba seedlings. This method was also useful for inducing males and oviparous females at lower temperature and in short days. Therefore, the present study confirms the effectiveness of using excised leaves on agar and suggests that this method could be applied to the rearing of other aphids, phytophagous mites, leaf miners and leaf‐gall formers.  相似文献   

4.
Ascogaster reticulata Watanabe (Hymenoptera: Braconidae) is an egg‐larval endoparasitoid of the smaller tea tortrix, Adoxophyes honmai Yasuda. Recent studies have examined tritrophic interactions among Camellia sinensis, A. honmai and A. reticulata, but the effect of non‐host insects on the induction of tea plant that may affect foraging behaviour of A. reticulata remains unclear. In this study, we selected two non‐host insects, Homona magnanima Diakonoff and Ostrinia furnacalis (Guenée), as representative species in our bioassays. Tea leaves were treated with homogenized female reproductive tissues of a non‐host insect in comparison with untreated leaves in a choice test. Residence times of parasitoids on both leaves were recorded. The parasitoids seemed to prefer walking on leaves treated with homogenates of H. magnanima over untreated leaves, but the difference in residence times was not significant. In contrast, its residence time on leaves treated with homogenates of O. furnacalis was significantly shorter than that on untreated leaves. Thus, the induction of tea leaf surface chemicals may differ among moth species, which may produce different types of elicitors. This difference may, in turn, affect the host‐searching behaviour of A. reticulata.  相似文献   

5.
6.
Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host–symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host‐controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.  相似文献   

7.
Various physiological effects of Wolbachia infection have been reported in invertebrates, but the impact of this infection on behavior and the consequences of these behavioral modifications on fitness have rarely been studied. Here, we investigate the effect of Wolbachia infection on the estimation of host nutritive resource quality in a parasitoid wasp. We compare decision‐making in uninfected and Wolbachia‐infected strains of Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) on patches containing either fresh or old host eggs. For both strains, fresh eggs were better hosts than older eggs, but the difference was smaller for the infected strain than for the uninfected strain. Oviposition behavior of uninfected wasps followed the predictions of optimal foraging theory. They behaved differently toward high‐ vs. low‐quality hosts, with more hosts visited and more ovipositions, fewer high‐quality hosts used for feeding or superparasitism, and a sex ratio that was more biased toward females in patches containing high‐quality hosts than in patches containing low‐quality ones. Uninfected wasps also displayed shorter acceptance and rejection times in high‐quality hosts than in hosts of lower quality. In contrast, infected wasps were less efficient in evaluating the nutritive quality of the host (fresh vs. old eggs) and had a reduced ability to discriminate between unparasitized and parasitized hosts. Furthermore, they needed more energy and therefore engaged in host feeding more often. This study highlights possible decision‐making manipulation by Wolbachia, and we discuss its consequences for Wolbachia fitness.  相似文献   

8.
Many studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia‐host–pathogen interaction remains elusive. Yet, understanding such interactions and their eco‐evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia‐infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia‐uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within‐host–pathogens interaction and the potential eco‐evolutionary consequences of the use of biocontrol agents for Wolbachia‐host associations.  相似文献   

9.
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods and induces a variety of reproductive anomalies, including cytoplasmic incompatibility (CI). Three populations of the two‐spotted spider mite, Tetranychus urticae, were investigated in the present study. Based on gene sequencing, they had different host genetic backgrounds but were infected with the same Wolbachia strain. We also examined the CI level relative to host background, male age, Wolbachia density, and Ankyrin (ANK) gene expression in T. urticae. The results of the present study suggest that: (1) CI differences between populations appear to be a result of host genetic background; (2) male age is not a factor determining intensity of CI; (3) Wolbachia density in males may serve as threshold factor necessary for the CI to occur in T. urticae, after which other factors become important in determining the strength of CI; and (4) hosts may modulate CI intensity through modulation of ANK gene expression in males. Our results describe a new type of interaction between Wolbachia and its hosts, and the effect of the interactions on CI. Further investigations on the functions of Wolbachia ankyrin gene products and their host targets, particularly with respect to host reproductive manipulation, are also imperative.  相似文献   

10.
Reproductive parasites such as Wolbachia can spread through uninfected host populations by increasing the relative fitness of the infected maternal lineage. However, empirical estimates of how fast this process occurs are limited. Here we use nucleotide sequences of male‐killing Wolbachia bacteria and co‐inherited mitochondria to address this issue in the island butterfly Hypolimnas bolina. We show that infected specimens scattered throughout the species range harbour the same Wolbachia and mitochondrial DNA as inferred from 6337 bp of the bacterial genome and 2985 bp of the mitochondrial genome, suggesting this strain of Wolbachia has spread across the South Pacific Islands at most 3000 years ago, and probably much more recently.  相似文献   

11.
Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host‐plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival × reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host‐plant defenses a 1.4‐fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1‐stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5‐fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3‐fold) and Wolbachia increasing (1.5‐fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi‐locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host‐symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types.  相似文献   

12.
Spatial patterns of the horse chestnut leafminer Cameraria ohridella Deschka & Dimic (Lepidoptera: Gracillariidae) population density was analysed in the cities of Bern and Brussels in order to explore its spatial population dynamics. The surveys were carried out in Bern in 1998 and 2000 and in Brussels in 2001 to assess population density in relation to local characteristics. In Brussels, population density was also measured using pheromone traps distributed over the city and collected twice per moth generation. A quantitative relationship was found between local population density (measured by pheromone traps and survey observations) and the amount of leaves left on the ground the previous fall. Several other factors were related to observed infestation levels: the occurrence of the pathogen Guignardia aesculi was inversely related to infestation by C. ohridella in Bern in 1998 and 2000, the number of horse chestnut trees within 800 m distance was positively related to infestation level in Bern in 2000, and the proportion of green areas within 100 m and the number of other horse chestnut trees within 2000 m were positively related to infestation levels in the 2001 Brussels survey. The pattern of infestation levels as a function of distance to potential population reservoirs suggested that C. ohridella re‐invades areas where overwintering leaves have been cleaned from refuge areas such as parks or urban forests. Our results indicate that the removal of leaves is a feasible first aid control measure to reduce moth population densities. However, leaf removal may not reduce moth densities when done improperly. In places where proper leaf removal is not feasible, other control measures are needed.  相似文献   

13.
Environmental gradients are expected to alter the relative effects of host‐plants and natural enemies on phytophagous insects. Moreover, studies of gradients may assist in an identification of the factors important to the outcomes of trophic interactions. We investigated the role of elevation‐based variation in environmental conditions (temperature and relative humidity) and foliar nitrogen on tri‐trophic interactions in Quercus gambelii Nutt. (Fagaceae) during 2001 and 2002. Quercus gambelii displayed significant elevational and seasonal fluctuation in foliar nitrogen content, and sites with similar environmental conditions produced similar foliar quality. However, leaf‐miners, Phyllonorycter spec. (Lepidoptera: Gracillariidae) and Cameraria spec. (Lepidoptera: Gracillariidae), did not perform better on trees with a greater nitrogen content. Overall densities of both species declined significantly in 2002, most likely due to severe drought conditions in the south‐western USA. Both species exhibited significant, but distinct, patterns in emergence rate with elevation. While environmentally based fluctuation in foliar nitrogen failed to predict the result of trophic interactions, site environmental conditions, as measured by temperature and relative humidity, were strongly related to differences in leaf‐miner performance and mortality. The ordination of sites by variation in environmental conditions accurately predicts the relative effect of unexplained vs. natural‐enemy sources of mortality for leaf‐miners.  相似文献   

14.
Shunsuke Utsumi  Takayuki Ohgushi 《Oikos》2009,118(12):1805-1815
It has been widely accepted that herbivory induces morphological, phenological, and chemical changes in a wide variety of terrestrial plants. There is an increasing appreciation that herbivore‐induced plant responses affect the performance and abundance of other arthropods. However, we still have a poor understanding of the effects of induced plant responses on community structures of arthropods. We examined the community‐level effects of willow regrowth in response to damage by larvae of swift moth Endoclita excrescence (Lepidoptera: Hepialidae) on herbivorous and predaceous arthropods on three willow species, Salix gilgiana, S. eriocarpa and S. serissaefolia. The leaves of sprouting lateral shoots induced by moth‐boring had a low C:N ratio. The overall abundance and species richness of herbivorous insects on the lateral shoots were increased on all three willow species. Densities of specialist chewers and sap‐feeders, and leaf miners increased on the newly emerged lateral shoots. In contrast, the densities of generalist chewers and sap‐feeders, and gall makers did not increase. Furthermore, ant and spider densities, and the overall abundance and species richness of predaceous arthropods increased on the lateral shoots on S. gilgiana and S. eriocarpa, but not S. serissaefolia. In addition to finding that effects of moth‐boring on arthropod abundance and species richness varied among willow species, we also found that moth‐boring, willow species, and their interaction differentially affected community composition. Our findings suggest that moth‐boring has community‐wide impacts on arthropod assemblages across three trophic levels via induced shoot regrowth and increase arthropod species diversity in this three willow species system.  相似文献   

15.
There is ample evidence that host shifts in plant‐feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host‐associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide‐ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD.  相似文献   

16.
Aim To investigate evolutionary changes in the size of leaves, stems and seeds of plants inhabiting isolated islands surrounding New Zealand. Location Antipodes, Auckland, Campbell, Chatham, Kermadec, Three Kings and Poor Knights Islands. Methods First, we compared the size of leaves and stems produced by 14 pairs of plant taxa between offshore islands and the New Zealand mainland, which were grown in a common garden to control for environmental effects. Similar comparisons of seed sizes were made between eight additional pairs of taxa. Second, we used herbarium specimens from 13 species pairs to investigate scaling relationships between leaf and stem sizes in an attempt to pinpoint which trait might be under selection. Third, we used herbarium specimens from 20 species to test whether changes in leaf size vary among islands located at different latitudes. Lastly, we compiled published records of plant heights to test whether insular species in the genus Hebe differed in size from their respective subgenera on the mainland. Results Although some evidence of dwarfism was observed, most insular taxa were larger than their mainland relatives. Leaf sizes scaled positively with stem diameters, with island taxa consistently producing larger leaves for any given stem size than mainland species. Leaf sizes also increased similarly among islands located at different latitudes. Size changes in insular Hebe species were unrelated to the average size of the respective subgenera on the mainland. Main conclusions Consistent evidence of gigantism was observed, suggesting that plants do not obey the island rule. Because our analyses were restricted to woody plants, results are also inconsistent with the ‘weeds‐to‐trees’ hypothesis. Disproportionate increases in leaf size relative to other plant traits suggest that selection may favour the evolution of larger leaves on islands, perhaps due to release from predation or increased intra‐specific competition.  相似文献   

17.
18.
Red autumn colouration of trees is the result of newly synthesized anthocyanin pigments in senescing autumn leaves. As anthocyanin accumulation is costly and the trait is not present in all species, anthocyanins must have an adaptive significance in autumn leaves. According to the coevolution hypothesis of autumn colours, red autumn leaves warn herbivorous insects – especially aphids that migrate to reproduce in trees in the autumn – that the tree will not be a suitable host for their offspring in spring due to a high level of chemical defence or lack of nutrients. The signalling allows trees to avoid herbivores and herbivores to choose better host trees. In this study the coevolution hypothesis was tested with four deciduous tree species that have red autumn leaf colouration – European aspen (Populus tremula L.) (Salicaceae), rowan (Sorbus aucuparia L.) (Rosaceae), mountain birch [Betula pubescens ssp. czerepanovii (NI Orlova) Hämet‐Ahti], and dwarf birch (Betula nana L.) (Betulaceae), and with two generalist herbivores, the autumnal moth [Epirrita autumnata (Borkhausen)] and the winter moth [Operophtera brumata (L.)] (both Lepidoptera: Geometridae). Anthocyanin concentrations of autumn leaves were determined from leaf samples and the growth performance parameters of the moth larvae on the study trees were measured in the spring. Trees with higher anthocyanin concentration in the autumn were predicted to be low‐quality food for the herbivores. Our results clearly showed that anthocyanin concentration was not correlated with the growth performance of the moths in any of the studied tree species. Thus, our study does not support the coevolution hypothesis of autumn colours.  相似文献   

19.
  • Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
  • Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
  • Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
  • These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
  相似文献   

20.
In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain‐regulated two‐component system (Pst–Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst–Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst–Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst–Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light‐dependent manner. We propose that the function of Pst–Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号