首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bracon hebetor (Say) (Hymenoptera : Braconidae) is a gregarious parasitoid that attacks a variety of important lepidopterous pests of stored product and in the field. In this study the effect of host species, size and larval competition on parasitoid size, survival and development were investigated. In laboratory studies, wasp eggs at a range of densities, were placed on larvae of different weight of three Lepidoptera host species namely Adoxophyes orana (Fischer von Röslerstamm, Tortricidae), Plodia interpunctella (Hubner, Pyralidae) and, Lobesia botrana(Dennis & Schiffermueller, Tortricidae). On A. orana survival of immature parasitoids was very low at all densities and different host weights. On L. botrana survival progressively reduced as egg density increased at both host weights examined for this host. Survival on P. interpunctella was significantly affected by egg density but not by host weight. Initial egg density had a significant effect on the size of emerging adults from each rearing host. Smaller adult parasitoids emerged as egg density per larva increased. Larval host weight of P. interpunctella and A. orana had a significant effect on the size of emerging adult parasitoids mainly at the higher egg densities used in these experiments. The above results of host quality on fitness of parasitoid are discussed.  相似文献   

2.
3.
Host age is an important determinant of host acceptance and suitability for egg parasitoids. As host embryonic development advances, the quality of resources available to the parasitoid offspring typically declines, usually resulting in reduced acceptance levels by foraging females and lower offspring fitness. We examined the ability of the parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) to parasitize and develop in Podisus maculiventris (Say) (Hemiptera: Pentatomidae) eggs of different ages. In laboratory experiments, we measured the effect of host age (6, 24, 48, 72, 96, or 120 h old) on parasitism rate and offspring fitness parameters such as survival, development time, sex ratio, and size. Contrary to our expectations, parasitism rate did not differ between host age treatments, nor did sex ratio allocation, offspring size, or the fecundity of newly emerged female offspring. However, parasitoid offspring had a longer development time with increasing host age. This trend was stronger for males than for females, which we suggest could reduce the degree of protandry among offspring emerging from older host eggs, thus increasing the rate of virginity upon leaving the emergence patch and resulting in more frequent off‐patch mating by female offspring in nature. Overall, our results suggest that all stages of P. maculiventris embryonic development are suitable for acceptance and development of T. podisi. Unlike most species of egg parasitoids, T. podisi has evolved mechanisms to utilize host resources, regardless of host developmental stage, with relatively minor fitness consequences.  相似文献   

4.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

5.
1. In studying the evolution of life-history strategies in parasitoids, considerable attention has been paid to the relationship between host quality and parasitoid fitness. Various workers have reported that host quality influences parasitoid size, development time, and survival. Because body size is frequently correlated with fecundity, longevity, and host-finding ability in parasitoids, this parameter is usually considered to be the main target of selection. 2. In koinobiont parasitoids that consume the entire host before pupation, adult parasitoid size and development time are often strongly correlated with host size at the time when it is developmentally arrested through destructive feeding by the parasitoid larva. 3. Here, a mathematical model is proposed to describe the larval feeding behaviour of the solitary koinobiont endoparasitoid Venturia canescens in four larval stadia of its host Plodia interpunctella. In particular, the model describes how adult size, represented by an exponential growth rate, and development time are traded off when the parasitoid develops in nutritionally suboptimal second stadium hosts. 4. Using a graphical model, the different conditions faced by V. canescens during development in various host species of greatly differing mass are illustrated. 5. It is argued that the relative importance of size and development time on parasitoid fitness is determined by ecological and biological characteristics of both host and parasitoid, and it is suggested that there may be correlations between life-history traits and host-utilisation strategies among koinobionts.  相似文献   

6.
Many endoparasitoids develop successfully within a range of host instars. Parasitoid survival is highest when parasitism is initiated in earlier host instars, due to age-related changes in internal (physiological) host defences. Most studies examining fitness-related costs associated with differences in host instar have concentrated on the parasitoid, ignoring the effects of parasitism on the development of surviving hosts that have encapsulated parasitoid eggs. A laboratory experiment was undertaken examining fitness-related costs associated with encapsulation of Venturia canescens (Hymenoptera: Ichneumonidae) eggs by fifth (L5) instar larvae of Corcyra cephalonica (Lepidoptera: Pyralidae). Growth and development of both host and parasitoid were monitored in C. cephalonica larvae containing 0, 1, 2, or 4 parasitoid eggs. Adult size and fecundity of C. cephalonica did not vary with the number of eggs per host. However, there was a distinct increase in host mortality with egg number, although most parasitoids emerged from hosts containing a single egg. The most dramatic effect on the host was a highly significant increase in development time from parasitism to adult eclosion, with hosts containing 4 parasitoid eggs taking over 2.5 days longer to complete development than unparasitized larvae. The egg-to-adult development time and size of adult V. canescens did not vary with egg number per host, as demonstrated in a previous experiment using a different host (Plodia interpunctella). The results described here show that there are fitness-related costs to the host associated with resistance to parasitism.  相似文献   

7.
Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae) is used as a potential biocontrol agent for several buprestid and cerambycid larvae. This study aimed to enhance the efficiency of mass‐rearing of this parasitoid by investigating the fitness gain of this bethylid wasp, including the proportion of successful parasitism and development, brood size, sex ratio, proportion of winged female offspring, body size and longevity of female offspring, under eight different maternal parasitoid density treatments using Thyestilla gebleri Faldermann as host in the laboratory. The results indicated that the foundress densities did not affect the parasitism or emergence rate of this parasitoid. Brood size of the parasitoids increased significantly when the number of maternal wasps ranged from one to four. However, further increases in foundress number did not affect the parasitoid brood size. The sex ratios of S. pupariae were always female‐biased. The proportions of male in the progeny colonies were <10% throughout all experimental treatments. The percentage of winged female progeny was not significantly influenced by the density of adult maternal parasitoids. Body sizes of parasitoids significantly declined with increasing maternal parasitoid densities. Although the parasitoid body size reduced when maternal wasp number was higher, it could be compromised by the relatively higher number of female offspring produced. Further, more than 70% of the parasitoids remained alive when they were stored at 12°C for four months throughout the experiments. These findings suggest that exposure of four female wasps to a single host larva would result in the highest fitness of S. pupariae. Our findings might provide a new approach to enhance the efficiency of mass‐rearing of this bethylid wasp.  相似文献   

8.
1. Numerous studies have reported the effects of learning or experience on parasitoid host preference and location. However, the integration of pre‐imaginal and adult experiences on the subsequent host preference and adult/offspring performance has been rarely tested in host–parasite interactions. 2. We present direct evidence that theses two kinds of experiences affect host preference and related fitness in the polyphagous parasitoid, Scleroderma guani. Two colonies of parasitoids were reared on Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Individuals from the two colonies were given host‐switching experience for one generation (pre‐imaginal experience) while other individuals were given prior ovipositing experience on the two species, respectively (adult experience). 3. Scleroderma guani females demonstrated that their experiences determined adult behavioural responses and their subsequent performance to hosts. Females maximised both adult fitness (fecundity and longevity) and offspring fitness (survival and sex ratio) when they encountered hosts similar to their maternal hosts. Behavioural plasticity in host choice was affected by adult experience, resulting in improved adult feeding and ovipositing behaviour and further modifying adult fecundity and the offspring sex ratio. There was a positive correlation between oviposition preference and adult fecundity. 4. The results indicated that S. guani exhibited positive preference–performance correlations. This is most likely due to an adaptation to maternal hosts over multiple generations. However, foraging potential of adults to available cues from hosts may be driven quickly by an experience‐induced learning process rather than by natural selection processes shaped over many generations.  相似文献   

9.
Plant secondary chemicals can alter herbivore suitability for parasitoids by weakening or stunting the host, delaying its development, or when larval parasitoids encounter ingested phytotoxins in the body of their host. Experiments with different parasitoids that exploit the same host species feeding on the same plant may provide insight about how parasitoid life history affects the strength of such interactions. The encyrtid wasp Copidosoma bakeri, a slow-developing polyembryonic egg-larval parasitoid, and the tachinid fly Linnaemya comta, a fast-developing solitary species, both parasitize Agrotis ipsilon, a generalist noctuid. We tested the hypothesis that of the two parasitoid species, the encyrtid, because of its more prolonged developmental association with the host, would suffer greater fitness costs when A. ipsilon feeds on perennial ryegrass containing an alkaloid-producing fungal endophyte. Indeed, fewer parasitized cutworms yielded C. bakeri broods, and those host mummies were smaller, formed more slowly, and contained fewer adults when the hosts fed on endophytic as opposed to endophyte-free grass. In contrast, L. comta fitness parameters were similar regardless of the type of grass upon which their host fed. Our results highlight that the outcome of endophyte-mediated tritrophic interactions may differ for different parasitoid species. Implications for integrating the use of endophytic grasses and biological control are discussed.  相似文献   

10.
Intrinsic competition in insect parasitoids occurs when supernumerary larvae develop in the same host as consequence of multiple ovipositions by females of the same species (intra-specific competition) or by females of different species (inter-specific competition). Studies on intrinsic competition have mainly focused on understanding the factors that play a role in the outcome of competition, while fitness-related effects for the parasitoid surviving the competition have been poorly investigated, especially in egg parasitoids. Interestingly, even the winning parasitoid can experience fitness costs due to larval development in a host in which multiple factors have been injected by the ovipositing females or released by their larvae. In this paper we studied fitness-related traits associated with intra- and inter-specific competition between Trissolcus basalis (Wollaston) and Ooencyrtus telenomicida (Vassiliev), the main egg parasitoids associated with the southern green stink bug Nezara viridula (L.) in Italy. We investigated the impact of intrinsic competition for the surviving parasitoid in terms of body size, developmental time, number and size of oocytes. Our results indicated that T. basalis adults did not experience fitness-related costs when surviving intra-specific competition; however, adults were smaller, took longer to develop and females produced fewer oocytes after surviving inter-specific competition. A different outcome was found for O. telenomicida where the emerging females were smaller, produced fewer and smaller oocytes when suffering intra-specific competition whereas no fitness costs were found when adults survived inter-specific competition. These results support the hypothesis that the impact of intrinsic competition in egg parasitoids depends on the severity of the competitive interaction, as fitness costs were more pronounced when the surviving parasitoid interacted with the most detrimental competitor.  相似文献   

11.
The invasion of a novel host species can create a mismatch in host choice and offspring survival (performance) when native parasitoids attempt to exploit the invasive host without being able to circumvent its resistance mechanisms. Invasive hosts can therefore act as evolutionary trap reducing parasitoids'' fitness and this may eventually lead to their extinction. Yet, escape from the trap can occur when parasitoids evolve behavioral avoidance or a physiological strategy compatible with the trap host, resulting in either host‐range expansion or a complete host‐shift. We developed an individual based model to investigate which conditions promote parasitoids to evolve behavioral preference that matches their performance, including host‐trap avoidance, and which conditions lead to adaptations to the unsuitable hosts. The model was inspired by solitary endo‐parasitoids attacking larval host stages. One important aspect of these conditions was reduced host survival during incompatible interaction, where a failed parasitization attempt by a parasitoid resulted not only in death of her offspring but also in host killing. This non‐reproductive host mortality had a strong influence on the likelihood of establishment of novel host–parasitoid relationship, in some cases constraining adaptation to the trap host species. Moreover, our model revealed that host‐search efficiency and genetic variation in host‐preference play a key role in the likelihood that parasitoids will include the suboptimal host in their host range, or will evolve behavioral avoidance resulting in specialization and host‐range conservation, respectively. Hence, invasive species might change the evolutionary trajectory of native parasitoid species, which is important for predicting biocontrol ability of native parasitoids towards novel hosts.  相似文献   

12.
Organisms can either evade winter's unfavourable conditions by migrating or diapausing, or endure them and maintain their activities. When it comes to foraging during winter, a period of scarce resources, there is strong selective pressure on resource exploitation strategy. Generalist parasitoids are particularly affected by this environmental constraint, as their fitness is deeply linked to the profitability of the available hosts. In this study, we considered a cereal aphid–parasitoid system and investigated (1) the host–parasitoid community structure, host availability, and parasitism rate in winter, (2) the influence of host quality in terms of species and instars on the fitness of the aphid parasitoid Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Braconidae: Aphidiinae), and (3) whether there is a detectable impact of host fidelity on parasitism success of this parasitoid species. Host density was low during winter and the aphid community consisted of the species Rhopalosiphum padi L. and Sitobion avenae Fabricius (both Hemiptera: Aphididae), both parasitized by A. rhopalosiphi at non‐negligible rates. Aphidius rhopalosiphi produced more offspring when parasitizing R. padi compared with S. avenae, whereas bigger offspring were produced when parasitizing S. avenae. Although aphid adults and old larvae were significantly larger hosts than young larvae, the latter resulted in higher emergence rates and larger parasitoids. No impact of host fidelity on emergence rates or offspring size was detected. This study provides some evidence that winter A. rhopalosiphi populations are able to take advantage of an array of host types that vary in profitability, indicating that host selectivity may drop under winter's unfavourable conditions.  相似文献   

13.
Although ovipositing insects may predominantly use resources that lead to high offspring quality, exceptions to this rule have considerably aided understanding of oviposition decisions. We report the frequency of host species use by a solitary facultative hyperparasitoid, Brachymeria subrugosa Blanchard (Hymenoptera: Chalcididae). In our samples, the wasp attacks the large pupae of the moth Gonioterma indecora Zeller (Lepidoptera: Elachistidae), as well as the considerably smaller, and rarer, pupae of two of its other parasitoids. Consistent with conditional sex allocation models, the wasp produced mainly female offspring on the largest (moth) host, an unbiased sex ratio on the middle‐sized (parasitoid) host, and only males on the smallest (parasitoid) host. Adult offspring size was correlated with the size of the host attacked. These features strongly suggest that the two smaller, primary parasitoid, hosts produce lower‐quality offspring. Despite being more common, the proportion of hosts from which parasitoids emerged was lowest (14%) on the largest host species, and highest on the rarer middle‐sized (34%) and smallest (30%) hosts. This suggests that costs or constraints on attacking high‐quality primary hosts may be a selective force favouring the evolution of hyperparasitism.  相似文献   

14.
Cannibalism, the killing and consumption of conspecifics, can even occur in insect species typically considered to be non‐carnivorous. Of particular interest is the cannibalism of parasitoid‐attacked conspecifics, which could reduce parasitism levels in subsequent generations for that conspecific population. This study reports on the occurrence and some of the consequences of cannibalism in parasitoid‐attacked obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). We show that larvae of C. rosaceana, which is considered to be an herbivorous caterpillar species, did not prey upon live conspecifics, but readily consumed conspecifics attacked by Habrobracon gelechiae Ashmead (Hymenoptera: Braconidae). Further examination found that C. rosaceana larvae feeding on parasitoid‐attacked conspecifics, since their fourth instar, suffered a higher mortality and reduction in body size than those fed on plant material only. The cannibalism of attacked conspecifics did not appear to offer any nutrient benefits for the cannibal. To our best knowledge, this is the first empirical example of the occurrence and some of the consequences of cannibalism by a non‐carnivorous insect on its parasitoid‐attacked conspecifics. We discuss the adaptive significance of such cannibalism on parasitoid‐attacked conspecifics with respect to a trans‐generational fitness gain for the population through the killing of the parasitoids, thereby reducing parasitism in subsequent generations.  相似文献   

15.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

16.
Host specificity and host selection by insect parasitoids are hypothesized to be correlated with suitability of the hosts for parasitoid development. The present study investigates the correlation between host suitability and earlier studied host-finding behaviour of two closely related braconid larval parasitoid species, the generalist Cotesia glomerata (L.) and the specialist C. rubecula (Marshall) (Hymenoptera: Braconidae). We compared the capability of both parasitoid species to parasitize and develop in three Pieris host species, i.e. P. brassicae (L.), P. rapae (L.) and P. napi (L.) (Lepidoptera: Pieridae). In laboratory experiments, we measured the effect of host species on fitness parameters such as survival, development, sex ratio and size of parasitoid progeny. The results show that C. glomerata is capable of developing in the three host species, with significant differences in parasitoid survival, clutch size and adult weight among Pieris species. The host range for development was more restricted for C. rubecula. Although C. rubecula is physiologically able to develop in P. brassicae larvae, parasitoid fitness is negatively affected by this host species, compared to its most regular host, P. rapae. A comparison of the present data on host suitability with earlier studies on host-searching behaviour suggests that the host-foraging behaviour of both parasitoid species not only leads to selection of the most suitable host species for parasitoid development, but also plays a significant role in shaping parasitoid host range.  相似文献   

17.
The host plant expansion of a diamondback moth, Plutella xylostella (L.) (DBM) strain to snowpea (Pisum sativum L.) raised the question whether a specialist parasitoid Diadegma semiclausum (DS) could be conditioned to locate and parasitize its host on the new host plant. In a specialist parasitoid a behavioural change towards a plant outside the normal host plant range of its host due to developmental experience is not expected. The responsive behaviour, parasitism rates and fitness of three subsequent DS generations were investigated on the snowpea-strain of DBM. After three generations of DS on the pea 62.5% of females chose an DBM-infested pea plant over DBM infested cabbage. Only 16.4% of cabbage-reared DS was attracted to infested pea. Rearing of the parasitoid in host larvae on peas significantly increased the number of larvae parasitized on this host plant in the first generation; however, there was no further increase in generations 2 and 3. Larval mortality was similar for all parasitoid/DBM combinations on both host plants, but significantly higher mortality occurred in parasitoid pupae from peas. Development time of the parasitoid was slightly prolonged on the pea strain of DBM. The number of females produced by parasitoids reared on the pea strain of DBM was significantly reduced as compared to D. semiclausum reared on the cabbage strain on both host strains. Results show that DS has the potential to change its responsive behaviour in order to locate its host on a new host plant. According to the current view, a specialist parasitoid is not expected to change its reaction to a plant outside the normal host plant range of its host. Within 3 generations, responsive behaviour towards snowpea could be increased. However, fitness trade-offs, especially an extreme shift in sex ratio to males reduced reproductive success.  相似文献   

18.
Life history theory predicts that individuals will allocate resources to different traits so as to maximize overall fitness. Because conditions experienced during early development can have strong downstream effects on adult phenotype and fitness, we investigated how four species of synovigenic, larval-pupal parasitoids that vary sharply in their degree of specialization (niche breadth) and life history (Diachasmimorpha longicaudata, Doryctobracon crawfordi, Opius hirtus and Utetes anastrephae), allocate resources acquired during the larval stage towards adult reproduction. Parasitoid larvae developed in a single host species reared on four different substrates that differed in quality. We measured parasitoid egg load at the moment of emergence and at 24 h, egg numbers over time, egg size, and also adult size. We predicted that across species the most specialized would have a lower capacity to respond to changes in host substrate quality than wasps with a broad host range, and that within species, females that emerged from hosts that developed in better quality substrates would have the most resources to invest in reproduction. Consistent with our predictions, the more specialized parasitoids were less plastic in some responses to host diet than the more generalist. However, patterns of egg load and size were variable across species. In general, there was a remarkable degree of reproductive effort-allocation constancy within parasitoid species. This may reflect more “time-limited” rather than “egg-limited” foraging strategies where the most expensive component of reproductive success is to locate and handle patchily-distributed and fruit-sequestered hosts. If so, egg costs, independent of degree of specialization, are relatively trivial and sufficient resources are available in fly larvae stemming from all of the substrates tested.  相似文献   

19.
In parasitoids, the size of the adult is influenced by the size and quality of the host in which it develops. Body size is generally positively correlated with several adult fitness proxies (fecundity, longevity, and mating capacity). The initial resources available to an individual can influence gamete production (sperm and oocytes), and the number and quality of gametes produced directly influence the expected fitness of both males and females. Gamete production in relation to adult body size was quantified in Trichogramma euproctidis (Girault) (Hymenoptera: Trichogrammatidae), a short‐lived egg parasitoid of lepidopteran species. To avoid host quality variation, male and female parasitoids of different body sizes were produced using superparasitism by allowing mated and virgin female parasitoids to oviposit on Trichoplusia ni Hübner (Lepidoptera: Noctuidae) eggs. Seminal vesicles and ovaries of their offspring were dissected to count oocytes and to measure sperm length and oocytes volume. Tibia length was also measured to estimate body size. The number of oocytes, volume of oocytes, maternal investment index [= (number of oocytes × mean volume of oocytes)/10 000] and sperm length were all significantly positively correlated to body size. These results show that initial resources acquired during larval stage induce phenotypic plasticity in gamete production in both male and female T. euproctidis. Whereas number of sperm and oocytes can influence the fitness of males and females through increased mating capacity and fecundity, variation in gamete size (sperm length and oocyte volume) could also affect the fitness of an individual through sperm and larval competition.  相似文献   

20.
Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host–parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while Oagrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer–resource stability and biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号