首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 11.5% of the littoral zone of a hypereutrophic Florida lake is disturbed by the construction of spawning beds by the cichlid fish, Sarotherodon aurea, during a single spawning season. Simulations of these beds were created during three seasons of the year to test for variation in recolonization rates and patterns in the benthic macroinvertebrate community.The seasonal variation in densities of benthic invertebrate populations suggests a direct relationship between reproductive activity and recolonization rate. Recolonization rates of the numerically dominant species, Polypedilum halterale (Diptera: Chironomidae), were much more rapid in the spring and summer than in the winter. In contrast, Hyalella azteca and Glyptotendipes paripes attained peak population densities during the winter season when Polypedilum was present in low densities. These organisms invaded the disturbed area in unusually high abundances and later declined to background levels. The final result was a winter population with densities comparable to the control (undisturbed) area, but the species composition was different.Similarity between disturbed and control communities during the winter season only reached 67% a month after disturbance, while communities during the warmer months attained nearly 90% similarity in less than 15 days. This lack of similarity during the winter indicates that disturbance, at the appropriate time, may play a role in community organization.  相似文献   

2.
Aim Over the past three decades, evidence has been growing that many Afro‐Palaearctic migratory bird populations have suffered sustained and severe declines. As causes of these declines exist across both the breeding and non‐breeding season, identifying potential drivers of population change is complex. In order to explore the roles of changes in regional and local environmental conditions on population change, we examine spatial and temporal variation in population trajectories of one of Europe’s most abundant Afro‐Palaearctic summer migrants, the willow warbler, Phylloscopus trochilus. Location Britain and Ireland. Methods We use national survey data from Britain and Ireland (BBS: BTO/RSPB/JNCC Breeding Bird Survey and CBS: BWI/NPWS/Heritage Council Countryside Breeding Survey) from 1994 to 2006 to model the spatial and temporal variation in willow warbler population trends. Results Across Britain and Ireland, population trends follow a gradient from sharp declines in the south and east of England to shallow declines and/or slight increases in parts of north and west England, across Scotland and Ireland. Decreasing the spatial scale of analysis reveals variation in both the rate and spatial extent of population change within central England and the majority of Scotland. The rates of population change also vary temporally; declines in the south of England are shallower now than at the start of the time series, whereas populations further north in Britain have undergone periods of increase and decline. Main conclusion These patterns suggest that regional‐scale drivers, such as changing climatic conditions, and local‐scale processes, such as habitat change, are interacting to produce spatially variable population trends. We discuss the potential mechanisms underlying these interactions and the challenges in addressing such changes at scales relevant to migratory species.  相似文献   

3.
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short‐lived, density‐dependent animal populations with different mating systems. We study the impact of a fluctuating, density‐dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne/N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male‐biased, density‐dependent sex ratio reduces the rate of genetic drift compared to an equal, density‐independent sex ratio, but a stochastic change towards male bias reduces the Ne/N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes.  相似文献   

4.
The population density of willow grouse (Lagopus lagopus L.) in northern Scandinavia changes in synchrony with the cyclic density variations in populations of microtine rodents. To assess the genetic changes accompanying the variations in population number, allozyme variation was studied at 23 loci in 640 willow grouse, representing four mainland and one island locality sampled during high and low population density. The average heterozygosity (H = 8.3%) and proportion of polymorphic loci (P = 26%) is not lower in willow grouse than in avian species with a more stable demography; the recurrent population density changes do not appear to affect drastically the long term effective population size, presumably because of extensive migration. Significant allele frequency differences were found both between populations and between different density phases. The genetic distance (D; Nei, 1972) was, in about 50% of the cases, larger between two consecutive time periods than between two localities in a certain year. Spatial and temporal allele frequency variation each represented around 3% of the gene diversity. The temporal heterogeneity may be caused by nonrandom sampling of family groups, rather than drift of allele frequencies between generations due to small effective population size, as has been suggested for microtine species.  相似文献   

5.
Questions: How do changes in forest management, i.e. in disturbance type and frequency, influence species diversity, abundance and composition of the seed bank? How does the relationship between seed bank and vegetation change? What are the implications for seed bank dynamics? Location: An ancient Quercus petraea — Carpinus betulus forest in conversion from coppice‐with‐standards to regular Quercus high forest near Montargis, France. Methods: Seed bank and vegetation were sampled in six replicated stand types, forming a chronosequence along the conversion pathway. The stand types represented mid‐successional stages of stands in transition from coppice‐with‐standards (to high forest (16 plots) and early‐ and mid‐successional high forest stands (32 plots). Results: Seed bank density and species richness decreased with time since last disturbance. Adjusting for seed density effects obscured species richness differences between stand types, but species of later seres were nested subsets of earlier seres, implying concomitant shifts in species richness and composition with time since disturbance. Later seres were characterized by species with low seed weight and high seed longevity. Seed banks of early seres were more similar to vegetation than to later seres. Conclusions: Abandonment of the coppice‐with‐standards regime altered the seed bank characteristics, as well as its relationship with vegetation. Longer management cycles under high forest yield impoverished seed banks. For their persistence, seed bank species will increasingly rely on management of permanently open areas in the forest landscape. Thus, revegetation at the beginning of new high‐forest cycles may increasingly depend on inflow from seed sources.  相似文献   

6.
Landscape and habitat dependence in cyclic and semi-cyclic small rodents   总被引:1,自引:0,他引:1  
Lennart Hansson 《Ecography》1989,12(4):345-350
Habitat dependence and foraging for bark of semi-cyclic and cyclic voles were examined on clearcuts in central and northern Sweden. Both populations showed inconsistent and weak relationships to habitat variables. Population dynamics of the northern cyclic population was more clearly related to landscape composition. Snow depth explained a large proportion of the total variation between clearcuts when the populations were pooled. Snow and landscape effects agree with recent hypotheses that 3–4 yr cyclic densities are related to predator impact. The negligible effects of other habitat variables may be due to generalized habitat selection by northern rodents and the historical growth of populations in different macrohabitats since population crashes. The relations between density and bark consumption differed between the two regions, indicating a threshold density for more intense bark use. From an applied point of view, areas with seedling damage can be predicted at regional rather than at local scales.  相似文献   

7.
In order to gain a better understanding of the consequences of population density cycles and landscape structure for the genetic composition in time and space of vole populations, we analyzed the multiannual genetic structure of the two numerically dominant, sympatric small rodent species of northernmost Fennoscandia. Red voles Myodes rutilus and grey-sided voles M. rufocanus were trapped in the subarctic birch forest along three fjords over five years. Along each fjord, there were four or five altitudinal transects each with five trapping stations. Spring and fall population densities were estimated from mark–recapture data. Grey-sided voles exhibited higher amplitude density fluctuations than red voles. Polymorphism at eight or nine microsatellite loci, determined in 1228 voles, was used to estimate local genetic diversity and differentiation among samples. Genetic diversity was higher in grey-sided voles than in red voles. Spring densities had no effect on local genetic diversity or on differentiation. The amplitude of density fluctuations and the extent of favorable habitat (sub-arctic birch forest) surrounding each site had a positive effect on genetic diversity, and the amplitude of density fluctuations had a negative effect on differentiation in red voles, for which fluctuating populations were compared with more stable populations. The harmonic mean of densities, reflecting average population sizes, had a negative effect on genetic diversity in red voles, but a positive effect in grey-sided voles, for which only fluctuating populations were compared. No other effects were significant for grey-sided voles. A temporal assignment test showed that the spatial structure was more stable in time for populations with more stable population dynamics. Altogether our results suggest that high amplitude density fluctuations lead to more gene flow and higher genetic diversity in vole populations.  相似文献   

8.
E. L.Zvereva  M. V.Kozlov 《Oikos》2006,115(3):413-426
In areas disturbed by pollution, populations of herbivorous insects may reach high densities. This study was conducted to test one of the hypotheses attempting to explain this phenomenon – that pollution creates an enemy-free space for herbivores. We monitored the population densities of Eriocrania leaf-mining moths on mountain birch, Betula pubescens subsp. czerepanovii , in the vicinity of the nickel–copper smelter in Monchegorsk (Kola Peninsula, NW Russia) over twelve years (1994–2005) and assessed larval mortality from parasitoids, ants and birds. The mean density (mines/birch leaf area) of Eriocrania populations in severely disturbed habitats (industrial barrens) was about 2.7 times higher, and peak densities 2–4 times higher, than in pristine forests. Temporal population variability (measured as the coefficient of variation of log-transformed densities) increased with an increase in pollution load. The proportion of infested trees was not affected by pollution, but mine distribution among trees was more clumped in the polluted sites. Eriocrania populations in disturbed sites fluctuated independently of each other, whereas populations in forest sites fluctuated in synchrony. Larval mortality caused by parasitoids was lower in disturbed sites only during those years when populations of Eriocrania reached high densities; mortality from ants and birds did not differ between disturbed and undisturbed habitats in either high or low density years. In undisturbed forests the rate of population change correlated negatively with previous-year parasitism, suggesting that parasitoids are the key demographic factor in Eriocrania population dynamics. In the habitats heavily disturbed by pollution no such correlation was found, which means that negative feedback with parasitoids is disrupted: parasitoids fail to follow host population growth, thus creating an enemy-free space for Eriocrania leafminers.  相似文献   

9.
A study on population density, structure, distribution and early growth characteristics of Tarchonanthus camphoratus was carried out on a Tarchonanthus‐dominated woodland. A line plot transect 4 km in length was laid out in a woodland along the altitudinal gradient capturing most of the observed vegetation variation. In total 34, 20 × 20 m plots were evaluated for their horizontal population structure and species composition. In addition, six more plots dominated by Tarchonanthus were monitored for coppice and shoot development for a period of 8 months. Understanding of growth and population characteristics of the dominant species in woodland is necessary for its effective management. Results indicate that the woodland can be delineated into three distinct stands by using cluster analysis based on location and composition. The diameter size class distribution of the woodland follows a reverse J curve, which indicate a normal uneven‐aged forest. Tarchonanthus camphoratus has a high regenerative power after cutting or burning, which indicates its high potential for sustainable management. It was concluded that the woodland could be stratified into distinct stands for management. Permanent sample plots should be established to determine the sustained yield, as size‐class distribution alone is insufficient. A management and utilization schedule based on distinct stands is recommended.  相似文献   

10.
Understanding landscape patterns in mortality risk is crucial for promoting recovery of threatened and endangered species. Humans affect mortality risk in large carnivores such as wolves (Canis lupus), but spatiotemporally varying density dependence can significantly influence the landscape of survival. This potentially occurs when density varies spatially and risk is unevenly distributed. We quantified spatiotemporal sources of variation in survival rates of gray wolves (C. lupus) during a 21‐year period of population recovery in the Upper Peninsula of Michigan, USA. We focused on mapping risk across time using Cox Proportional Hazards (CPH) models with time‐dependent covariates, thus exploring a shifting mosaic of survival. Extended CPH models and time‐dependent covariates revealed influences of seasonality, density dependence and experience, as well as individual‐level factors and landscape predictors of risk. We used results to predict the shifting landscape of risk at the beginning, middle, and end of the wolf recovery time series. Survival rates varied spatially and declined over time. Long‐term change was density‐dependent, with landscape predictors such as agricultural land cover and edge densities contributing negatively to survival. Survival also varied seasonally and depended on individual experience, sex, and resident versus transient status. The shifting landscape of survival suggested that increasing density contributed to greater potential for human conflict and wolf mortality risk. Long‐term spatial variation in key population vital rates is largely unquantified in many threatened, endangered, and recovering species. Variation in risk may indicate potential for source‐sink population dynamics, especially where individuals preemptively occupy suitable territories, which forces new individuals into riskier habitat types as density increases. We encourage managers to explore relationships between adult survival and localized changes in population density. Density‐dependent risk maps can identify increasing conflict areas or potential habitat sinks which may persist due to high recruitment in adjacent habitats.  相似文献   

11.
Summary

The effects of physical disturbance on larval populations of the mayfly Afroptilum sudafricanum Lestage were examined in the Naro Morn River, Kenya. Disturbance was induced by stirring, shifting and relocating streambed substrates by hand. The method aimed to simulate natural physical disturbance. The effects of continuous disturbance were examined by sampling larval populations at minute intervals of up to 14 minutes. The effects of periodic disturbance were examined by sampling larval populations which had been disturbed at intervals of minutes (short-term), hours (medium-term) and days (long-term). About 85% of A. sudafricanum individuals was removed from the streambed within four minutes of continuous physical disturbance. There were higher densities at night than during the day. All densities on the control sites for the medium-term disturbance experiments were significantly higher than those on the disturbed sites. Most of the post-disturbance densities on the medium-term disturbance sites were significantly lower than the pre-disturbance densities (Tukey's honestly significance difference test, α=0.05). There was no distinct density pattern on the sites exposed to long-term disturbances. Sites with the same disturbance regime appeared to react differently, some having dramatic fluctuations in density. Disturbance effects on A. sudafricanum density were multi-faceted with different expressions in time and space. It is concluded that A. sudafricanum is highly mobile and is capable of recolonizing disturbed areas within six hours. Their high mobility enables them to crawl into the deeper sediment layers during floods. However, recovery time depended not only on species mobility but also on how densely the sources of recolonization were populated and the frequency of disturbance. Slight increases, strong declines and negligible disturbance effects on the density of A. sudafricanum were evident. Afroptilum sudafricanum is highly mobile and is capable of rapid recolonization. It is concluded that physical disturbance affects A. sudafricanum populations in the Naro Morn River.  相似文献   

12.
Habitat selection is a hierarchical process that may yield various patterns depending on the scales of investigation. We employed satellite radio‐telemetry to examine patterns of habitat selection by female woodland caribou in central Saskatchewan at both coarse (seasonal range) and fine (daily area) scales. At each scale, we converted spatial data describing compositions of available and used habitat to standardised resource selection indices and examined them with multivariate analyses of variance. Seasonal ranges generally showed preferential inclusion of peatlands and black spruce dominated stands relative to recently disturbed stands and early seral stage forests. In all populations, caribou preferred peatlands and black spruce forests to all other habitat types at the daily area scale, in general, these patterns may reveal the effective avoidance of wolves, the primary factor limiting caribou throughout the boreal forest. In three populations where seasonal ranges showed the selective inclusion of either young jack pine stands or clearcuts along with peatlands and black spruce forests, we found a relative avoidance of the clearcuts and young jack pine stands at the daily area scale. As all caribou populations in the area are thought to be relics of a once more continuous distribution, the seasonal range selection by animals in disturbed areas may better describe historic rather than current habitat selection. We found inter‐annual variation in selection at the coarser spatial scale in one population, and inter‐seasonal variation in selection at the finer spatial scale in three populations, indicating that the relative grains of the spatial and temporal scales coincide. We were better able to explain the seasonal variations in finer scale selection by considering available forage, a factor less likely than predation to limit woodland caribou populations. The data agree with the theory that the spatial and temporal hierarchy of habitat selection reflects the hierarchy of factors potentially limiting individual fitness.  相似文献   

13.
Understanding how gene flow shapes contemporary population structure requires the explicit consideration of landscape composition and configuration. New landscape genetic approaches allow us to link such heterogeneity to gene flow within and among populations. However, the attribution of cause is difficult when landscape features are spatially correlated, or when genetic patterns reflect past events. We use spatial Bayesian clustering and landscape resistance analysis to identify the landscape features that influence gene flow across two regional populations of the eastern massasauga rattlesnake, Sistrurus c. catenatus. Based on spatially explicit simulations, we inferred how habitat distribution modulates gene flow and attempted to disentangle the effects of spatially confounded landscape features. We found genetic clustering across one regional landscape but not the other, and also local differences in the effect of landscape on gene flow. Beyond the effects of isolation‐by‐distance, water bodies appear to underlie genetic differentiation among individuals in one regional population. Significant effects of roads were additionally detected locally, but these effects are possibly confounded with the signal of water bodies. In contrast, we found no signal of isolation‐by‐distance or landscape effects on genetic structure in the other regional population. Our simulations imply that these local differences have arisen as a result of differences in population density or tendencies for juvenile rather than adult dispersal. Importantly, our simulations also demonstrate that the ability to detect the consequences of contemporary anthropogenic landscape features (e.g. roads) on gene flow may be compromised when long‐standing natural features (e.g. water bodies) co‐exist on the landscape.  相似文献   

14.
Temporal variation both due to density dependent and density independent processes affect performance and vital rates in large herbivores. Annual fluctuations in climate affect foraging conditions and thus body growth of large herbivores during the short growing season in alpine habitats. Also, high animal densities on summer ranges may increase competition for food and reduce body mass gain. Yet, little is known about interactive effects of density and climate on alpine summer ranges, and the time scales these processes operate on. In this fully replicated landscape‐scale experiment, we kept domestic sheep at high and low densities over nine grazing seasons in an alpine habitat, and tested the relative role of density and annual variation for lamb body mass gain during summer and whether effects of density and annual variation interacted. We found that lambs at high density gained less mass over the summer season than lambs at low density. At short time scales the density effect interacted with annual fluctuations in body growth. We documented a long‐term temporal trend in body mass, consistent with the hypothesis that grazing effects affect habitat differentially at high and low density over years. At high density lamb autumn body mass declined during the first three grazing seasons and then stabilized, whereas body mass slightly increased over years at low density. This long‐term trend suggests accumulative density dependent effects from a biomass or quality reduction, and hence delayed food competition at high density and possibly facilitation at low density. Our experiment provides new insight into how density dependent effects on performance of a large herbivore depend on temporal scale of observation.  相似文献   

15.
Question: In deciduous‐dominated forest landscapes, what are the relative roles of fire weather, climate, human and biophysical landscape characteristics for explaining variation in large fire occurrence and area burned? Location: The Great Lakes‐St. Lawrence forest of Canada. Methods: We characterized the recent (1959–1999) regime of large (≥ 200 ha) fires in 26 deciduous‐dominated landscapes and analysed these data in an information‐theoretic framework to compare six hypotheses that related fire occurrence and area burned to fire weather severity, climate normals, population and road densities, and enduring landscape characteristics such as surficial deposits and large lakes. Results: 392 large fires burned 833 698 ha during the study period, annually burning on average 0.07%± 0.42% of forested area in each landscape. Fire activity was strongly seasonal, with most fires and area burned occurring in May and June. A combination of antecedent‐winter precipitation, fire season precipitation deficit/surplus and percent of landscape covered by well‐drained surficial deposits best explained fire occurrence and area burned. Fire occurrence varied only as a function of fire weather and climate variables, whereas area burned was also explained by percent cover of aspen and pine stands, human population density and two enduring characteristics: percent cover of large water bodies and glaciofluvial deposits. Conclusion: Understanding the relative role of these variables may help design adaptation strategies for forecasted increases in fire weather severity by allowing (1) prioritization of landscapes according to enduring characteristics and (2) management of their composition so that substantially increased fire activity would be necessary to transform landscape structure and composition.  相似文献   

16.
Empirical studies for different life histories have shown an inverse relationship between elasticity (i.e. the proportional contribution to population growth rate) and temporal variation in vital rates. It is accepted that this relationship indicates the effect of selective pressures in reducing variation in those life‐history traits with a major impact on fitness. In this paper, we sought to determine whether changes in environmental conditions affect the relationship between elasticity of vital rates and their temporal variation, and whether vital rates with simultaneously large elasticity and temporal variation might represent a characteristic life‐history strategy. We used demographic data on 13 populations of the short‐lived Hypericum cumulicola over 5–6 years, in three time‐since‐fire classes. For each population of each time‐since‐fire, we computed the mean matrix over years and its respective elasticity matrix, and the coefficients of variation in matrix entries over study years as an estimate of temporal variability. We found that mean elasticity negatively significantly correlated with temporal variation in vital rates in populations (overall eight out of 13) included in each time‐since‐fire. However, seedling recruitment exhibited both high elasticity and high temporal variation in almost all study populations. These results indicated that (1) the general relationship between elasticity and temporal variation in vital rates was not modified by environmental changes due to time‐since‐fire, and (2) high elasticity and high temporal variation in seedling recruitment in H. cumulicola is a particular trait of the species' life history. After seed survival in the soil seed bank, seedling recruitment represents the most important life‐history trait influencing H. cumulicola population growth rate (and fitness). The high temporal variability in seedling recruitment suggests that this trait is determined by environmental cues, leading to an increase in population size and subsequent replenishment of the seed bank in favorable years.  相似文献   

17.
It is often assumed that species recolonization follows from the restoration of key habitat structure. Thus, forest restoration focuses on the recovery of trees into deforested landscapes, so that a multitude of associated organisms can achieve “colonization credit” and recolonize from remnant source populations into restored habitat. This opportunity for recolonization exists because species vulnerable to habitat loss may experience an “extinction debt,” during which their remnant populations decline only slowly to equilibrium with a deforested landscape. These persistent but declining populations become propagule sources for recolonization. To test limits to “colonization credit,” this study focused on old‐growth dependent lichen epiphytes, using a simulation to identify a hypothetical threshold at which: (1) the number of remnant populations, and (2) their population sizes, are too low to achieve recolonization and population recovery, despite efforts placed into forest restoration. The results show that for a landscape scenario relevant to the industrialized temperate zone, with less than 5% of old‐growth forest remaining, and ambitions for restoration to circa 10–15% forest cover, there is a failure to achieve population recovery over long timescales (i.e. within 600 years), making translocation a necessary option. This delay represents a “colonization deficit” that may be a common feature in ecological restoration more generally.  相似文献   

18.
C. Packer  A. Loveridge  S. Canney  T. Caro  S.T. Garnett  M. Pfeifer  K.K. Zander  A. Swanson  D. MacNulty  G. Balme  H. Bauer  C.M. Begg  K.S. Begg  S. Bhalla  C. Bissett  T. Bodasing  H. Brink  A. Burger  A.C. Burton  B. Clegg  S. Dell  A. Delsink  T. Dickerson  S.M. Dloniak  D. Druce  L. Frank  P. Funston  N. Gichohi  R. Groom  C. Hanekom  B. Heath  L. Hunter  H.H. DeIongh  C.J. Joubert  S.M. Kasiki  B. Kissui  W. Knocker  B. Leathem  P.A. Lindsey  S.D. Maclennan  J.W. McNutt  S.M. Miller  S. Naylor  P. Nel  C. Ng'weno  K. Nicholls  J.O. Ogutu  E. Okot‐Omoya  B.D. Patterson  A. Plumptre  J. Salerno  K. Skinner  R. Slotow  E.A. Sogbohossou  K.J. Stratford  C. Winterbach  H. Winterbach  S. Polasky 《Ecology letters》2013,16(5):635-641
Conservationists often advocate for landscape approaches to wildlife management while others argue for physical separation between protected species and human communities, but direct empirical comparisons of these alternatives are scarce. We relate African lion population densities and population trends to contrasting management practices across 42 sites in 11 countries. Lion populations in fenced reserves are significantly closer to their estimated carrying capacities than unfenced populations. Whereas fenced reserves can maintain lions at 80% of their potential densities on annual management budgets of $500 km−2, unfenced populations require budgets in excess of $2000 km−2 to attain half their potential densities. Lions in fenced reserves are primarily limited by density dependence, but lions in unfenced reserves are highly sensitive to human population densities in surrounding communities, and unfenced populations are frequently subjected to density‐independent factors. Nearly half the unfenced lion populations may decline to near extinction over the next 20–40 years.  相似文献   

19.
Quantifying the influence of the landscape on the genetic structure of natural populations remains an important empirical challenge, particularly for poorly studied, ecologically cryptic species. We conducted an extensive microsatellite analysis to examine the population genetics of the southern long‐toed salamander (Ambystoma macrodactylum sigillatum) in a naturally complex landscape. Using spatially explicit modelling, we investigated the influence of the Sierra Nevada topography on potential dispersal corridors between sampled populations. Our results indicate very high‐genetic divergence among populations, high within‐deme relatedness, and little evidence of recent migration or population admixture. We also discovered unexpectedly high between‐year genetic differentiation (FST) for breeding sites, suggesting that breeding groups vary over localized space and time. While environmental factors associated with high‐elevation montane habitats apparently play an important role in shaping population differentiation, additional, species‐specific biological processes must also be operating to account for observed deviations from temporal, among‐year panmixia. Our study emphasizes the population‐level insights that can be gained from high‐density sampling in space and time, and the highly substructured population biology that may characterize amphibians in extreme montane habitats.  相似文献   

20.
The circumstances and potential for insects to damage perennial bioenergy crops is not well understood in the United States. In this study, we evaluated the spillover and herbivory of eastern tent caterpillars (Malacosoma americanum) from host trees onto short rotation coppice (SRC) willow bioenergy crops (Salix sp.). Host trees were all in the Rosaceae family and included Prunus americana, Prunus virginiana and Malus sp. Willow showed greater leaf herbivory with increasing proximity to a defoliated host tree, suggesting that tent caterpillars spilled‐over to willow after denuding their host. More tent caterpillar herbivory was associated with greater mortality of willow. This study suggests that landscape context and spatial position of host trees is important to the early establishment of a willow bioenergy crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号