首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil respiration (Rs) is the largest terrestrial carbon (C) efflux to the atmosphere and is predicted to increase drastically through global warming. However, the responses of Rs to global warming are complicated by the fact that terrestrial plant growth and the subsequent input of plant litter to soil are also altered by ongoing climate change and human activities. Despite a number of experiments established in various ecosystems around the world, it remains a challenge to predict the magnitude and direction of changes in Rs and its temperature sensitivity (Q10) due to litter alteration. We present a meta‐analysis of 100 published studies to examine the responses of Rs and Q10 to manipulated aboveground and belowground litter alterations. We found that 100% aboveground litter addition (double litter) increased Rs by 26.1% (95% confident intervals, 18.4%–33.7%), whereas 100% aboveground litter removal, root removal and litter + root removal reduced Rs by 22.8% (18.5%–27.1%), 34.1% (27.2%–40.9%) and 43.4% (36.6%–50.2%) respectively. Moreover, the effects of aboveground double litter and litter removal on Rs increased with experimental duration, but not those of root removal. Aboveground litter removal marginally increased Q10 by 6.2% (0.2%–12.3%) because of the higher temperature sensitivity of stable C substrate than fresh litter. Estimated from the studies that simultaneously tested the responses of Rs to aboveground litter addition and removal and assuming negligible changes in root‐derived Rs, “priming effect” on average accounted for 7.3% (0.6%–14.0%) of Rs and increased over time. Across the global variation in terrestrial ecosystems, the effects of aboveground litter removal, root removal, litter + root removal on Rs as well as the positive effect of litter removal on Q10 increased with water availability. Our meta‐analysis indicates that priming effects should be considered in predicting Rs to climate change‐induced increases in litterfall. Our analysis also highlights the need to incorporate spatial climate gradient in projecting long‐term Rs responses to litter alterations.  相似文献   

2.
任强  艾鷖  胡健  田黎明  陈仕勇  泽让东科 《生态学报》2021,41(17):6862-6870
放牧作为家畜饲养方式之一,是草地最简单、有效的利用方式,放牧中的家畜对草地生态系统的影响是全球畜牧生态学研究的焦点。过度放牧导致草地退化严重,虽然在青藏高原地区已有较多放牧对草地影响的研究,但探究连续4年放牧对高寒草地生态系统影响的定位实验却鲜见报道。本研究在青藏高原东缘选取典型高寒草地,使用高原特有且分布最广的牦牛作为大型草食放牧家畜,设置了4个牦牛放牧强度(禁牧:无放牧、轻牧:1头/hm2、中牧:2头/hm2和重牧:3头/hm2)以研究其对高寒草地土壤和植物功能的影响。开展4年试验后的结果表明:放牧条件下土壤含水率显著增加;而土壤容重、全磷和有机质含量对放牧强度均无显著性响应;土壤全氮和pH的响应主要在表层0-20 cm,其中全氮为轻牧和重牧处理分别显著高于中牧,中牧处理下的土壤pH为显著高于轻牧;土壤全钾含量在禁牧处理中显著高于放牧处理;而土壤有效氮和速效钾均为中牧处理显著高于禁牧;放牧可以显著降低植物地上生物量。牦牛放牧强度显著影响土壤含水率、有效养分和植物地上生物量,而对其它土壤理化性质影响较弱。本研究结果揭示放牧对高寒草地土壤理化性质和植物地上生物量的影响,为青藏高原高寒草甸生态系统保护、可持续管理和合理放牧率提供理论依据。  相似文献   

3.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

4.
Climate change predominated by warming over the past decades has affected plant biodiversity, distribution, and ecosystem functioning in alpine grasslands. Yet, little is known about the interactive effect of climate change and grazing on biodiversity and ecosystem functioning. Here, we conducted a vegetation translocation experiment (ten soil‐vegetation blocks were translocated from high‐altitudinal site 3,245 m to low‐altitudinal site 3,045 m) combined with grazing treatment in an alpine meadow on the Tibetan Plateau. The results showed that (a) translocation induced effect of climate change from harsh, high‐altitudinal site to benign, low‐altitudinal site significantly promoted species richness, and density of asexual and sexual seedling, with an increase in the proportion of asexual recruitment to sexual recruitment; (b) grazing decreased the proportion of asexual seedling to sexual recruitment within community, led to a shift in the dominant plant functional groups from graminoids and legumes to forbs; and (c) grazing partly offset the increased species richness of seedling, but not seedling density, induced by climate change. These findings suggest that moderate grazing may buffer the effect of climate change on the plant community composition, and thus, functional role in alpine meadows. Further understanding the influence of climate change on grassland ecosystems needs to consider the non‐additive effect of grazing and climate change to sustainability of grassland services.  相似文献   

5.
在青藏高原多年冻土广泛分布的风火山地区,选择小嵩草(Kobresia pygmea)草甸和藏嵩草(Kobresia tibetica)沼泽化草甸为研究对象,采用开顶增温室(Open top chambers, OTCs)模拟气候变暖,探讨模拟增温对土壤水分差异的两种草甸地下生物量及根系功能性状的影响。结果显示,(1)增温显著增加小嵩草草甸0—20 cm根系生物量,主要是由于表层(0—10 cm)根系生物量显著增加,而对藏嵩草沼泽化草甸根系生物量无影响。(2)增温显著增加了小嵩草草甸根组织密度,同时提高了藏嵩草沼泽化草甸10—20 cm的比根长和比根面积(3)增温降低了小嵩草草甸的根系碳含量及10—20 cm根系氮含量,增加了藏嵩草沼泽化草甸的碳含量及10—20 cm根系氮含量,显著提高了小嵩草草甸和藏嵩草沼泽化草甸深层(10—20 cm)根系碳氮比。这些结果预示着增温使得土壤水分较低的小嵩草草甸朝着资源保守的慢速生长型发展,以适应暖干化的环境;土壤水分较高的藏嵩草沼泽化草甸朝着资源获取的快速生长型发展,加速利用土壤中的养分满足植物生长需要。可见,土壤水分可以调节高寒草甸对气候变暖的演变趋势,强调了水分的重要性。  相似文献   

6.
Grazing is an important modulator of both plant productivity and biodiversity in grassland community, yet how to determine a suitable grazing intensity in alpine grassland is still controversy. Here, we explore the effects of different grazing intensities on plant biomass and species composition, both at community level and functional group level, and examines the productivity–species richness relationship under four grazing patterns: no grazing (CK), light grazing (LG), moderate grazing, (MG) and heavy grazing (HG), attempt to determine a suitable grazing intensity in alpine grassland. The results were as follows. The total aboveground biomass (AGB) reduced with increasing grazing intensity, and the response of plant functional groups was different. AGB of both sedges and legumes increased from MG to HG, while the AGB of forbs reduced sharply and the grass AGB remained steady. There was a significant positive relationship between productivity and species richness both at community level and functional group level. In contrast, the belowground biomass (BGB) showed a unimodal relationship from CK to HG, peaking in MG (8,297.72 ± 621.29 g/m2). Interestingly, the grassland community tends to allocate more root biomass to the upper soil layer under increasing grazing intensities. Our results suggesting that moderate levels of disturbance may be the optimal grassland management strategy for alpine meadow in terms of root production.  相似文献   

7.
Knowledge about methanotrophs and their activities is important to understand the microbial mediation of the greenhouse gas CH4 under climate change and human activities in terrestrial ecosystems. The effects of simulated warming and sheep grazing on methanotrophic abundance, community composition, and activity were studied in an alpine meadow soil on the Tibetan Plateau. There was high abundance of methanotrophs (1.2–3.4 × 108 pmoA gene copies per gram of dry weight soil) assessed by real-time PCR, and warming significantly increased the abundance regardless of grazing. A total of 64 methanotrophic operational taxonomic units (OTUs) were obtained from 1,439 clone sequences, of these OTUs; 63 OTUs (98.4%) belonged to type I methanotrophs, and only one OTU was Methylocystis of type II methanotrophs. The methanotroph community composition and diversity were not apparently affected by the treatments. Warming and grazing significantly enhanced the potential CH4 oxidation activity. There were significantly negative correlations between methanotrophic abundance and soil moisture and between methanotrophic abundance and NH4–N content. The study suggests that type I methanotrophs, as the dominance, may play a key role in CH4 oxidation, and the alpine meadow has great potential to consume more CH4 under future warmer and grazing conditions on the Tibetan Plateau.  相似文献   

8.
彭阿辉  王根绪  杨阳  肖瑶  张莉  杨燕 《生态学报》2017,37(12):4118-4127
以青藏高原高寒草甸和高寒沼泽中的两种优势物种小嵩草(Kobresia pygmaea)和藏嵩草(Kobresia tibetica)为研究对象,采用开顶式增温室(OTCs)模拟气候变暖,对比分析两种植物叶片形态和解剖结构特征、根活性及地上—地下部分化学计量特征对增温的响应差异。结果表明:增温显著增加了小嵩草叶片的长度和叶片的数量,也显著增加了藏嵩草株高和叶片长度;增温没有明显改变小嵩草和藏嵩草的叶片上表皮厚度、下表皮厚度、下表皮细胞角质层厚度、叶肉细胞长和叶肉细胞宽;增温增加了小嵩草根系活跃吸收面积,对小嵩草和藏嵩草其他根系活性指标没有显著影响;增温降低了小嵩草地上部分N含量,对小嵩草地上部分C、P含量没有影响;增温降低了藏嵩草地上部分C、N含量,对P含量没有影响;增温增加了小嵩草和藏嵩草地上部分C/N比,提高了两种优势植物对氮素的长期利用效率;增温对小嵩草地下部分化学计量学特征没有影响,而降低了藏嵩草地下部分C含量和C/N比。  相似文献   

9.
增温和放牧对高寒草甸凋落物分解及其养分释放的影响不依赖于凋落物品质在放牧生态系统中,增温、放牧和凋落物品质共同决定着凋落物分解和养分释放。然而,在以往的研究中这些因子的效应通常被单独地研究。在本研究中,我们在青藏高原高寒草甸开展了一个昼夜非对称增温和中度放牧两因子的凋落物分解试验。从每个处理中收集了凋落物样品,这些凋落物一部分放在它们的来源处理小区,另一部分放在其他处理小区以此来探究增温、放牧以及凋落物品质对凋落物分解和养分释放的影响。研究结果表明,增温而不是放牧显著增加了凋落物质量的损失、单位面积全碳、全氮以及全磷含量的损失,这主要是因为增温增加了凋落物生物量和分解速率。然而,尽管同时增温放牧处理也加快了凋落物分解速率,但由于降低了凋落物生物量,所以增温放牧处理并没有显著影响单位面积的凋落物碳和养分释放量。相比木质素含量和碳氮比而言,季节性土壤平均温度能够更好地预测凋落物分解速率。增温和放牧对凋落物分解存在交互作用,但它们和凋落物品质对凋落物的影响均不存在交互作用。单位面积的总氮释放的温度敏感性要高于总磷。因此,我们的结果表明,增温对凋落物分解以及养分释放的影响要显著大于凋落物品质变化对其分解的影响。在高寒草甸,氮释放的增加可能会间接导致土壤磷有效性的缺乏。  相似文献   

10.
气候变化和放牧活动对草地植物物种多样性和生产力具有重要影响。为探索藏北高寒草地植物物种多样性和生产力对增温、放牧及其交互作用的响应, 于2011年在藏北高原开始建立增温实验平台, 2016年起增设放牧、增温+放牧实验, 连续2年(2016-2017年)观测了植物群落特征、群落组成、生产力和物种多样性。结果表明, 增温和放牧对高寒草地植物高度和净初级生产力具有显著交互作用。在放牧条件下, 增温对植物高度无显著影响; 但在不放牧条件下, 增温却显著增加了植物高度。在放牧条件下, 增温对净初级生产力的影响存在年际差异, 2016年增温对生产力无显著影响, 2017年增温显著降低了植物净初级生产力; 但在不放牧条件下, 增温对植物净初级生产力无显著影响。增温和放牧对高寒草地植物物种丰富度、盖度、重要值及多样性均无显著交互作用。植物盖度在增温和放牧条件下显著降低, 杂类草物种比例显著增加, 但物种多样性均无显著变化。研究表明, 增温和放牧显著改变高寒草地群落结构。未来气候变化条件下, 放牧活动加剧有可能导致高寒草地生产力降低。  相似文献   

11.
The response of grassland soil bacterial community characteristics to different grazing intensities is central ecological topics. However, the underlying mechanisms between bacterial abundance, diversity index, and grazing intensity remain unclear. We measured alpine meadow soil bacterial gene richness and diversity index under four grazing intensities using 16S rDNA sequence analysis on the Tibetan Plateau. The results suggest that extreme grazing significantly decreased alpine meadow both bacterial gene abundance and diversity index (p < .05). The lowest operational taxonomic unit numbers were 3,012 ± 447 copies under heavy grazing in the growing season. It was significantly lower than heavy grazing with approximately 3,958 ± 119 copies (p < .05). The Shannon index for medium and high grazing grassland bacterial diversity was slightly higher than for light grazing in the growing season. Furthermore, the lowest index was approximately 9.20 ± 0.50 for extreme grazing of grassland in the growing season. The average bacterial gene abundance and diversity index in the dormancy period were slightly higher than that in the growing season. Soil bulk density, pH, ammonium, and nitrate nitrogen were the main positive factors driving grazed grassland bacterial communities. Our study provides insight into the response of alpine meadows to grazing intensity, demonstrating that moderate grazing increases bacterial community diversity in grazed grasslands.  相似文献   

12.
张艳博  罗鹏  孙庚  牟成香  王志远  吴宁  罗光荣 《生态学报》2012,32(15):4605-4617
为认识放牧对青藏高原东部中生性的高寒草甸草地和半湿生的沼泽草地凋落物分解的影响,在这两种草地上分别设置了围栏和放牧样地,研究了其各自的混合凋落物样品和4个优势物种(发草Deschampsiacaespitos、鹅绒委陵菜Potentilla anserine、木里苔草Carexmuliensis、藏嵩草Kobresiatibetica)凋落物的分解和养分释放动态,这4个优势物种也大致代表了当地沼泽草地生态系统在放牧和气候变暖驱动下逆行演替不同阶段的优势物种类群。结果表明,各优势物种凋落物的分解速率有显著差异;放牧在总体上促进了凋落物的分解,但不同物种的响应有所不同;放牧对凋落物C的释放影响不显著或有抑制作用,但对N、P的释放具有一定促进作用。对各优势物种凋落物分解和养分释放模式的分析表明,群落逆行演替过程中,凋落物分解和C释放加速,可能促进沼泽湿地退化的正反馈效应。草甸草地的退化标志物种鹅绒委陵菜具有较高的凋落物质量和分解速度,反映了中生条件下植物应对牲畜啃食采用"逃避"而非"抵抗"策略的趋向。  相似文献   

13.
姜林  胡骥  杨振安  詹伟  赵川  朱单  何奕忻  陈槐  彭长辉 《生态学报》2021,41(4):1402-1411
群落中物种的丧失在干扰下普遍存在,但对生态系统过程和功能的影响仍存在较大不确定性。选取青藏高原东缘典型高寒草甸为对象,开展优势植物功能群的梯度去除试验,以模拟长期过牧干扰下物种的损失。经过连续两个生长季的功能群去除,我们对群落的物种组成、结构、多样性和生物量等特征进行了分析,探讨了上述指标的响应过程和机制。研究结果表明:(1)功能群的去除降低了群落高度,增加了物种均匀度,并显著影响了禾草、杂草优势比以及功能群多样性和优势度;(2)同时,去除操作显著减小了凋落物量与禾草生物量,并显著影响了群落地上生物量;(3)进一步分析还发现,禾草、莎草和杂草功能群之间存在显著的竞争关系,群落生产力主要取决于禾草功能群并随物种均匀度的增大而显著减小。上述结果表明,禾草在高寒草甸群落中占据竞争优势地位,植物功能群的损失主要通过改变种间竞争关系、引起有机物质丢失影响群落过程和功能。  相似文献   

14.
青藏高原气候变暖幅度显著高于全球其他区域,深刻影响着该地区植物群落的结构和稳定性。选择西藏念青唐古拉山的三种典型植物群落(高寒草原、高寒草甸和流石滩)作为研究对象,采用开顶式增温箱(OTC)模拟增温,研究了短期增温对植物群落结构和稳定性的影响。结果表明:(1)增温改变了群落的优势物种,影响其结构组成,而对物种多样性无显著影响;(2)增温显著降低了高寒草甸的地上生物量(P < 0.05),增加地下生物量(P < 0.01),从而导致了群落地下地上生物量分配策略的改变;(3)增温降低群落中部分物种的生态位宽度,进而影响群落稳定性,其中高寒草甸变化最大,达到-66.8%。研究结果可为青藏高原高寒草地生态系统应对和适应未来气候变化提供一定科学依据。  相似文献   

15.
Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with 13C–15N‐enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO3–N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming.  相似文献   

16.
The ecological environment in alpine regions is fragile and sensitive to land-use and land-cover (LULC) change and climate warming. However, there are limited studies on the response of LULC and vegetation activity to climate change and human interference in mountainous permafrost regions. Based on in-situ meteorological and multi-source remote sensing data, we performed time trend and partial correlation analyses to investigate the spatial and temporal variation of LULC, landscape pattern, and vegetation growth under the impact of climate change and human activities in the source region of the Datong River from 2000 to 2019. Our results showed that the alpine desert area decreased significantly at a rate of −13.1 km2 yr−1 (p < 0.05), while the alpine meadow area increased at a rate of 8.3 km2 yr−1 (p < 0.1). Mining and road areas showed a significant increasing trend at a rate of 3.2 km2 yr−1 and 1.2 km2 yr−1, respectively. The increasing alpine meadow and mining areas were mainly derived from alpine deserts and alpine wetlands, respectively. The number of alpine wetland patches increased significantly along with a significant decrease in the landscape shape index of the rivers. Vegetation growth, as indicated by the enhanced vegetation index (EVI) was positively correlated with temperature but negatively correlated with precipitation and solar radiation in 59.6%, 52.3%, and 56.5% of the vegetated areas, respectively (p < 0.05). Temperature was the dominant climate factor controlling vegetation dynamics, and the recent warming hiatus resulted in a significant increase in EVI for alpine deserts, but no significant changes in EVI for alpine wetlands and alpine meadows. Increasing risk of negative impacts from human activities, including mineral exploration and grazing, on vegetation distribution and growth was observed. This study provides clear evidence of the upward invasion of alpine meadows into alpine desert areas under warm and humid climatic conditions. As climate warming intensifies, alpine meadow expansion may be impeded by extreme precipitation and permafrost thawing.  相似文献   

17.
Human activities have caused dramatic land use changes, impacting plant community composition, diversity and function. Fertilization and grazing are the two most common land use modes in grasslands. To understand the effects of grazing and fertilization on sexual and asexual recruitment in alpine grasslands, we conducted a demographic field investigation of species recruitment in an alpine meadow on the Tibetan Plateau. Grazing and fertilization had different effects on the quantity and diversity of sexual and asexual recruitment. Sexual recruitment increased significantly in grazed plots, but decreased significantly in fertilized plots. Asexual recruitment increased significantly in fertilized plots, but decreased significantly in grazed plots. For functional groups, grazing significantly reduced offspring recruitment of graminoids, but significantly increased offspring recruitment of forbs and legumes; fertilization significantly reduced offspring recruitment of forbs and legumes, but significantly increased offspring recruitment of graminoids. Furthermore, offspring diversity from sexual recruitment was significantly higher than from asexual recruitment in grazed plots, and as compared to non‐grazed and fertilized grasslands. Our studies indicate that moderate grazing disturbance has positive effects on seedling recruitment and offspring diversity, and fertilization has negative effects on offspring diversity, but may significantly increase asexual recruitment.  相似文献   

18.
高寒小嵩草草甸牦牛优化放牧强度的研究   总被引:3,自引:0,他引:3  
高寒小嵩草草甸牦牛放牧强度试验表明:(1)不同放牧强度下各植物类群的地上生物量和总的地上生物量之间差异极显著,莎草科植物地上生物量的百分比组成之间差异极显著,禾本科和杂类草地上生物量的百分比组成之间差异显著,而且禾本科和莎草科(除对照外)植物的地上生物量及其百分比组成随放牧强度的增加而减小,杂类草的变化与之相反;(2)优良牧草比例和草地质量指数与放牧强度之间均呈负相关,而优良牧草比例的年度变化和牦牛个体增重的年度变化之间呈正相关;(3)群落的相似性系数随放牧强度的增加而减小.通过建立植被变化度量指标,认为优良牧草比例的年度变化是评价高寒小嵩草草甸放牧价值的直接度量指标,而相似性系数的变化和草地质量指数的变化与牦牛生产力没有明显的联系,不能反映草场植被放牧价值的变化,只能指示植物群落整体的相对变化程度;牦牛的放牧强度约为1.86头/hm2是小嵩草高寒草甸暖季草场可持续生产而不退化的最大放牧强度.  相似文献   

19.
The effects of environmental change on soil animal communities are poorly known. Norwegian mountains are subject to both atmospheric nitrogen deposition and increased temperature. In a nutrient poor alpine Dryas heath in south Norway, soil arthropods were studied after 4 years of simulated environmental change by warming and/or nutrient addition. Warming alone only affected three low‐density Collembola species, while nutrient addition, with or without warming, greatly changed the dominance hierarchy of the microarthropod community. Certain Collembola species with a short (1 year) life cycle and predatory Gamasina mites increased markedly in density. These groups may have been favored by increased litter production, as plant biomass and litter producing graminoids and forbs increased significantly in plots with nutrient addition and nutrient addition combined with warming. Microarthropods with a longer life cycle, such as Oribatida and certain Collembola, were generally unaffected by nutrient addition and probably need more time to respond. The number of Oribatida taxa was, however, reduced in plots with nutrient addition, both with and without warming. A ground‐living species of Coccoidea (Homoptera) declined in plots with nutrient addition and warming compared with only warming, probably due to reduced cover of its host plant Dryas. The density of Diptera larvae (Sciaridae and Chironomidae) was unaffected by the treatments. Our results show that increased nutrient availability in nutrient poor alpine soils may have large but different effects on different taxa of soil animals. Species with short life cycles reacted first. Nutrient addition and nutrient addition combined with warming resulted in several effects below ground on microarthropods as previously shown above ground on plants: Increased biomass, high dominance of a few rapid‐growing species, contrasting responses of closely related species, and a reduction in species numbers. These short‐term responses may have profound long‐term effects in this alpine ecosystem.  相似文献   

20.
We conducted a field experiment in two alpine meadows to investigate the short-term effects of nitrogen enrichment and plant litter biomass on plant species richness, the percent cover of functional groups, soil microbial biomass, and enzyme activity in two alpine meadow communities. The addition of nitrogen fertilizer to experimental plots over two growing seasons increased plant production, as indicated by increases in both the living plant biomass and litter biomass in the Kobresia humilis meadow community. In contrast, fertilization had no significant effect on the amounts of living biomass and litter biomass in the K. tibetica meadow. The litter treatment results indicate that litter removal significantly increased the living biomass and decreased the litter biomass in the K. humilis meadow; however, litter-removal and litter-intact treatments had no impact on the amounts of living biomass and litter biomass in the K. tibetica meadow. Litter production depended on the degree of grass cover and was also influenced by nitrogen enrichment. The increase in plant biomass reflects a strong positive effect of nitrogen enrichment and litter removal on grasses in the K. humilis meadow. Neither fertilization nor litter removal had any impact on the grass biomass in the K. tibetica meadow. Sedge biomass was not significantly affected by either nutrient enrichment or litter removal in either alpine meadow community. The plant species richness decreased in the K. humilis meadow following nitrogen addition. In the K. humilis meadow, microbial biomass C increased significantly in response to the nitrogen enrichment and litter removal treatments. Enzyme activities differed depending on the enzyme and the different alpine meadow communities; in general, enzyme activities were higher in the upper soil layers (0–10 cm and 10–20 cm) than in the lower soil layers (20–40 cm). The amounts of living plant biomass and plant litter biomass in response to the different treatments of the two alpine meadow communities affected the soil microbial biomass C, soil organic C, and soil fertility. These results suggest that the original soil conditions, plant community composition, and community productivity are very important in regulating plant community productivity and microbial biomass and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号