首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Previous studies on intraguild predation have mainly focused on within-class assemblages, even though avian top predators may also influence mammalian mesopredator prey. By using nation-wide long-term data from Finland, northern Europe, we examined the impacts of golden eagles (Aquila chrysaetos) together with red foxes (Vulpes vulpes) and pine martens (Martes martes) on forest-dwelling herbivores, black grouse (Tetrao tetrix) and hazel grouse (Tetrastes bonasia). We hypothesized that eagles may alleviate the overall predation pressure on grouse by imposing intraguild predation risk on mesopredators. The predation impact of eagle was modelled using eagle density estimates and distance to eagle nest. Wildlife triangle counts were used as predation impact proxies of mammalian mesopredators and as measures of response in grouse. Our results show that eagle density correlated negatively with black grouse abundance indices while being positively associated with the proportion of juveniles in both grouse species, irrespective of the abundance of mesopredators. Yet, foxes and martens alone had a negative effect on the abundance indices and the proportion of young in the two grouse species. This suggests that the possible cascading effects of eagles are not mediated by decreased mesopredator numbers, but instead by fear effects. Alternatively, they may be mediated by other species than fox or marten studied here. In conclusion, we found support for the hypothesis that eagles provide protection for juvenile black and hazel grouse, whereas they are a threat for adult grouse. This important information helps us to better understand the role of avian top predators in terrestrial ecosystems.  相似文献   

2.
Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-na?ve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.  相似文献   

3.
Summer food of sympatric red fox and pine marten in the German Alps   总被引:1,自引:1,他引:0  
Based on fecal analyses, we compared summer diet composition and trophic niche breadth for the sympatric red fox Vulpes vulpes (n=55 scats) and pine marten Martes martes (n=64) in the foothills of the German Alps. Mammals accounted for 41 and 51% of the consumed biomass by pine martens and red foxes, respectively, and no single mammal species exceeded 8% of the diet. The larger red fox consumed a wider range of prey sizes than the smaller pine marten, and both consumed large amounts of plants and also insects. Whereas the Levins index suggested that both predators have specialist feeding niches, the Shannon-Wiener index showed that both predators were relatively generalist. Despite its preliminary nature, our study suggests that a strict distinction between generalist and specialist trophic niches is not justified for medium-sized carnivores in the Alps, particularly as results greatly depend on the indices used.  相似文献   

4.
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited.  相似文献   

5.
ABSTRACT Although nest predation is often the single largest source of mortality in avian populations, manipulative studies to determine predator impacts on nest survival are rare, particularly studies that examine impacts of mid-size mammalian predators (hereafter, mesopredators) on nest survival of shrub-nesting birds. We quantified nest survival and identified nest predators of shrub-nesting songbirds within 4 large (approx. 40-ha) exclosures and 4 control sites within a longleaf pine (Pinus palustris) ecosystem. During 2003–2006, we located and monitored 535 shrub nests (222 with videography) for 4,804 nest-days to quantify daily nest survival and document predation events. We found no support for a treatment effect, suggesting mesopredators had little impact on daily nest survival (0.9303 in controls and 0.9260 in exclosures) of shrub-nesting songbirds. For the 5 most commonly monitored species, daily nest survival within species was constant. Our analysis suggested that shrub nests were most vulnerable during the nestling stage and presence of cameras on nests increased survival with the increase in survival being more pronounced during the incubation stage. We filmed 107 nest predation events, identifying predators at 88 nests. Of these 88 nests, snakes caused 33%, red imported fire ants (hereafter fire ants, Solenopsis invicta) 28%, raptors 17%, corvids 8%, mesopredators 6%, and small mammals 8% of nest predations. Cause-specific nest predation in controls and exclosures did not differ from expectation, providing evidence that compensatory predation did not occur. Nest predators differed from expectation with regard to nest stage; fire ants and raptors only depredated nests during the nestling stage. Presence of cameras had no effect on nest abandonment. Fire ants were the most prevalent nest predator, and nest predation by fire ants was only observed on nestlings, potentially reducing likelihood of renesting. Magnitude and timing of fire ant predation suggests that fire ants may be the most influential nest predator of shrub-nesting birds within the longleaf pine ecosystem. Our data suggest that controlling mesopredators will have no effect on nest success of shrub-nesting birds within longleaf pine forests.  相似文献   

6.
Climate and landscape change are expected to significantly affect trophic interactions, which will especially harm top predators such as the golden eagle Aquila chrysaetos. Availability of optimal prey is recognized to influence reproductive success of raptors on a regional scale. For the golden eagle, medium‐sized prey species between 0.5 and 5 kg are widely considered to be optimal prey during the breeding season, whereas smaller and larger species are deemed as energetically sub‐optimal. However, knowledge about the effects of optimal prey availability is still scarce on larger scales. To decrease this apparent knowledge gap, we combined biogeographical information on range margins with information about the foraging behaviour and reproductive success of golden eagles from 67 studies spanning the Northern Hemisphere. We hypothesized that availability of optimal prey will affect foraging behaviour and breeding success and, thus, distribution patterns of the golden eagle not only on a local but also on a continental scale. We correlated the diet breadth quantifying foraging generalism, breeding success and proportions of small (< 0.5 kg), medium (0.5–5 kg) and large‐sized (> 5 kg) prey species within the diet with the minimum distance of the examined eagles to the actual species distribution boundary. Closer to the range edge, we observed decreased proportions of medium‐sized prey species and decreasing breeding success of golden eagles. Diet breadth as well as proportions of small and large‐sized prey species increased, however, towards the range edge. Thus, availability of optimal‐sized prey species seems to be a crucial driver of foraging behaviour, breeding success and distribution of golden eagles on a continental scale. However, underlying effects of landscape characteristics and human influence on optimal prey availability has to be investigated in further large‐scale studies to fully understand the major threats facing the golden eagle and possibly other large terrestrial birds of prey.  相似文献   

7.
The stone marten (Martes foina) and the pine marten (M. martes) are closely related mammalian carnivores potentially subject to exploitative competition. The recent expansion of the pine marten into the intensively cultivated plain of the River Po (NW Italy), where previously only stone marten occurred, offered an interesting opportunity to analyse their relationships. We studied the distribution and diet of Martes species and trophic niche overlap between martens and red foxes (Vulpes vulpes) in two study areas, each with two pseudoreplicates, by analysing genotyped faeces. Our results seem to confirm the displacement of the stone marten from one study area, the pine marten being the only Martes species occurring where previously the stone marten had been reported. We found a large food niche overlap between red fox and both stone and pine martens, but with evidence of size-related differences in the consumption of some food items. We hypothesised that, due to the poor prey-base of the environment, highly altered by intensive crop cultivation, intense interspecific competition originally occurred between the red fox and stone marten. The heightening of interspecific competition caused by the entry of the pine marten in the predator guild may have caused the displacement of the stone marten, at least temporarily. The mechanism of such displacement needs to be clarified through further surveys in areas where the three species occur sympatrically.  相似文献   

8.
Abstract

The golden eagle (Aquila chrysaetos) is one of the most important birds of prey in the Northern Hemisphere. This raptor is used to building large nests in high cliffs to which they return for several breeding years accumulating important amounts of their prey skeletal remains. This makes the golden eagle one of the major predators able to accumulate faunal remains in archaeological sites. Despite this fact, the taphonomic signature of golden eagles has not been properly characterized. Here we present the analysis of ingested and non-ingested faunal remains predated and accumulated by this raptor in two different nesting areas from the Iberian Peninsula. Results show how the faunal taxonomic record may vary depending on the ecological zone. Leporids and terrestrial carnivores are the best represented. The observed anatomical representation, breakage and bone surface modification patterns are discussed for different taxa. The taphonomic pattern varies depending on the type of prey and the origin of skeletal materials (non-ingested vs. pellets). Finally, after comparing our results with marks left by other predators, several characteristic features are noted to recognise golden eagles as agents of animal bones accumulations in the fossil record.  相似文献   

9.
We suggest that reintroductions, like biological invasions, have two phases: establishment when a new population becomes self-sustaining, and spread when a population increases its distribution. Stochastic effects on mortality and sex ratios are most likely to determine whether a population becomes established, while factors influencing birth rates will probably most influence spread. Using this establishment-spread structure, we evaluate the autecological suitability of regions in England for pine marten Martes martes reintroductions. Risks of mortality from predator control, traffic accidents and predation by foxes were used to evaluate suitability for establishment. Mortality risk was higher in all potential release regions in England (selected as having 25% or more woodland cover) than in regions of current pine marten distribution in Scotland; risk of predation was higher in the latter. Indices of prey abundance were used to evaluate suitability for populations to spread. Prey indices in potential release regions were generally higher than in regions of current distribution. A relation between prey, woodland cover, and known pine marten densities suggested that potential release regions are capable of supporting relatively high densities of pine martens, though these might be reduced by higher mortality. We concluded that all potential release regions are suitable for pine marten populations to spread. However, reintroductions should first be to regions with lower risk of mortality, in case higher levels of the latter prevent establishment. The suitability of relict regions of distribution in northern England was low until post-war afforestation, suggesting that habitat suitability constrained recovery of relict populations. These regions remain less suitable for reintroductions.  相似文献   

10.
1. Habitat heterogeneity and predator behaviour can strongly affect predator-prey interactions but these factors are rarely considered simultaneously, especially when systems encompass multiple predators and prey. 2. In the Arctic, greater snow geese Anser caerulescens atlanticus L. nest in two structurally different habitats: wetlands that form intricate networks of water channels, and mesic tundra where such obstacles are absent. In this heterogeneous environment, goose eggs are exposed to two types of predators: the arctic fox Vulpes lagopus L. and a diversity of avian predators. We hypothesized that, contrary to birds, the hunting ability of foxes would be impaired by the structurally complex wetland habitat, resulting in a lower predation risk for goose eggs. 3. In addition, lemmings, the main prey of foxes, show strong population cycles. We thus further examined how their fluctuations influenced the interaction between habitat heterogeneity and fox predation on goose eggs. 4. An experimental approach with artificial nests suggested that foxes were faster than avian predators to find unattended goose nests in mesic tundra whereas the reverse was true in wetlands. Foxes spent 3.5 times more time between consecutive attacks on real goose nests in wetlands than in mesic tundra. Their attacks on goose nests were also half as successful in wetlands than in mesic tundra whereas no difference was found for avian predators. 5. Nesting success in wetlands (65%) was higher than in mesic tundra (56%) but the difference between habitats increased during lemming crashes (15%) compared to other phases of the cycle (5%). Nests located at the edge of wetland patches were also less successful than central ones, suggesting a gradient in accessibility of goose nests in wetlands for foxes. 6. Our study shows that the structural complexity of wetlands decreases predation risk from foxes but not avian predators in arctic-nesting birds. Our results also demonstrate that cyclic lemming populations indirectly alter the spatial distribution of productive nests due to a complex interaction between habitat structure, prey-switching and foraging success of foxes.  相似文献   

11.
Apparent competition between prey is hypothesized to occur more frequently in environments with low densities of preferred prey, where predators are forced to forage for multiple prey items. In the arctic tundra, numerical and functional responses of predators to preferred prey (lemmings) affect the predation pressure on alternative prey (goose eggs) and predators aggregate in areas of high alternative prey density. Therefore, we hypothesized that predation risk on incidental prey (shorebird eggs) would increase in patches of high goose nest density when lemmings were scarce. To test this hypothesis, we measured predation risk on artificial shorebird nests in quadrats varying in goose nest density on Bylot Island (Nunavut, Canada) across three summers with variable lemming abundance. Predation risk on artificial shorebird nests was positively related to goose nest density, and this relationship was strongest at low lemming abundance when predation risk increased by 600% as goose nest density increased from 0 to 12 nests ha?1. Camera monitoring showed that activity of arctic foxes, the most important predator, increased with goose nest density. Our data support our incidental prey hypothesis; when preferred prey decrease in abundance, predator mediated apparent competition via aggregative response occurs between the alternative and incidental prey items.  相似文献   

12.
Eurasian pine martens are considered habitat specialists, associated primarily with mature stands of mesic mixed wood forest habitats, and avoid areas without overhead cover The species is found throughout the temperate and boreal regions of the continent but on the Mediterranean island of Minorca, introduced pine martens thrive in a competitor- and predator-free environment I test the prediction that because of evolved prey-capture and predator avoidance strategies Minorcan martens should select habitats most similar to temperate and northern parts of their range Scat index routes were used to quantify pine marten habitat selection Marten did not demonstrate any habitat type preferences although observed use of pine forests and coastal shrublands was slighly greater than expected Marten were indifferent to overhead cover whereas mesic sites and areas of tall high shrub density were favored Small mammal trap indices and preferred prey suggested that martens commonly used non-forested areas My results demonstrated that on Minorca pine martens were habitat generalists In the absence of predators open non-forested habitats were equally important to pine marten as were forested ones  相似文献   

13.
Red fox (Vulpes vulpes) shares similar prey preferences and co-occurs with several other carnivores, and is together with pine marten (Martes martes), the most common mesocarnivore in the northern boreal forest. Voles are important prey for both species, but it is unclear to what extent they compete for the same food resources in winter. Here, we use 2139 km and 533 km of meticulous snow tracking of red foxes and pine martens to evaluate their food niches. We measured hunting and digging behaviour, whether successful or not, and the effect of snow depth and temperature. Pine martens were restricted to forested habitats, whereas red foxes used a wide range of habitats. Red foxes were found to dig more often than pine martens, 0.67 vs. 0.39 digging events per kilometre. Hunting was less common and similar in both species, about 0.1 hunting event per kilometre. Pine martens were more efficient in hunting and finding food remains compared to red foxes. Increasing snow depth reduced hunting success and also reduced dig success of red foxes. Food niche overlap was small. Red foxes used mostly voles and carrion remains of ungulates, whereas pine martens used cached eggs and small birds. We suggest that caching eggs is an important strategy for pine martens to survive winter in northern latitudes. Snow depth was important for capturing voles, and thick snow cover appeared to mask the effect of vole peaks. Intensified land use, as clear-cutting and leaving slaughter remains from harvest, will benefit red foxes on the expense of pine martens. The ongoing climate change with warmer winters and less snow will likely further benefit the red fox.  相似文献   

14.

Background

Invasive species are recognized as a primary driver of native species endangerment and their removal is often a key component of a conservation strategy. Removing invasive species is not always a straightforward task, however, especially when they interact with other species in complex ways to negatively influence native species. Because unintended consequences may arise if all invasive species cannot be removed simultaneously, the order of their removal is of paramount importance to ecological restoration. In the mid-1990s, three subspecies of the island fox Urocyon littoralis were driven to near extinction on the northern California Channel Islands owing to heightened predation by golden eagles Aquila chrysaetos. Eagles were lured to the islands by an abundant supply of feral pigs Sus scrofa and through the process of apparent competition pigs indirectly facilitated the decline in foxes. As a consequence, both pigs and eagles had to be removed to recover the critically endangered fox. Complete removal of pigs was problematic: removing pigs first could force eagles to concentrate on the remaining foxes, increasing their probability of extinction. Removing eagles first was difficult: eagles are not easily captured and lethal removal was politically distasteful.

Methodology/Principal Findings

Using prey remains collected from eagle nests both before and after the eradication of pigs, we show that one pair of eagles that eluded capture did indeed focus more on foxes. These results support the premise that if the threat of eagle predation had not been mitigated prior to pig removal, fox extinction would have been a more likely outcome.

Conclusions/Significance

If complete eradication of all interacting invasive species is not possible, the order in which they are removed requires careful consideration. If overlooked, unexpected consequences may result that could impede restoration.  相似文献   

15.
Predation risk effects on fitness related measures in a resident bird   总被引:1,自引:0,他引:1  
Predation risk is thought to be highly variable in space and time. However, breeding avian predators may create locally fixed and spatially fairly predictable predation risk determined by the distance to their nest. From the prey perspective, this creates predation risk gradients that potentially have an effect on fitness and behavioural decisions of prey. We studied how breeding avian predators affect habitat selection (nest location) and the resulting fitness consequences in a northern population of resident willow tit ( Parus montanus ). Data included 429 willow tit nests over a four year period in a landscape containing a total of 33 avian predator nests. Willow tit nests were located randomly in the landscape and no predator avoidance in habitat selection or emptying of territories in proximity to predators was observed. Nestling size, however, was positively associated with distance from predator nests (n=252). Nestling mass and wing length were about 4.5% smaller close to predator nests compared to nestlings raised far from predator nests. Tarsus length also exhibited a positive relationship with increasing distance from predator nest but this was limited to habitats of young forests and pine bogs or dense mixed forests (4% increase). It is likely that habitat structural complexity influenced the perception of predation risk in different habitats. Our results indicate that willow tits do not provide reliable cues of predator free habitats for settling migrants. Nonetheless, breeding avian predators may create predictable predation risk in the landscape which is an important factor affecting reproductive success and potentially the demography of prey populations.  相似文献   

16.
Predation risk influences prey use of space. However, little is known about how predation risk influences breeding habitat selection and the fitness consequences of these decisions. The nest sites of central-place foraging predators may spatially anchor predation risk in the landscape. We explored how the spatial dispersion of avian predator nests influenced prey territory location and fitness related measures. We placed 249 nest boxes for migrant pied flycatchers Ficedula hypoleuca , at distances between 10 and 630 m, around seven different sparrowhawk nests Accipiter nisus . After closely monitoring flycatcher nests we found that flycatcher arrival dates, nest box occupation rates and clutch size showed a unimodal relationship with distance from sparrowhawk nests. This relationship suggested an optimal territory location at intermediate distances between 330 and 430 m from sparrowhawk nests. Furthermore, pied flycatcher nestling quantity and quality increased linearly with distance from sparrowhawk nests. These fitness related measures were between 4 and 26% larger in flycatcher nestlings raised far from, relative to those raised nearby, sparrowhawk nests. Our results suggest that breeding sparrowhawk affected both flycatcher habitat selection and reproductive success. We propose that nesting predators create predictable spatial variation in predation risk for both adult prey and possibly their nests, to which prey individuals are able to adaptively respond. Recognising predictable spatial variation in perceived predation risk may be fundamental for a proper understanding of predator-prey interactions and indeed prey species interactions.  相似文献   

17.
Although predation avoidance is the most commonly invoked explanation for vertebrate social evolution, there is little evidence that individuals in larger groups experience lower predation rates than those in small groups. We compare the morphological and behavioural traits of mammal prey species in the Taï forest, Ivory Coast, with the diet preferences of three of their non-human predators: leopards, chimpanzees and African crowned eagles. Individual predators show marked differences in their predation rates on prey species of different body sizes, but clear patterns with prey behaviour were apparent only when differences in prey habitat use were incorporated into the analyses. Leopard predation rates are highest for terrestrial species living in smaller groups, whereas eagle predation rates are negatively correlated with group size only among arboreal prey. When prey predation rates are summed over all three predators, terrestrial species incur higher predation rates than arboreal species and, within both categories, predation rates decline with increasing prey group size and decreasing density of groups in the habitat. These results reveal that it is necessary to consider anti-predator strategies in the context of a dynamic behavioural interaction between predators and prey.  相似文献   

18.
The mesopredator release hypothesis (MRH) predicts that reduced abundance of top‐order predators results in an increase in the abundance of smaller predators (mesopredators) due to a reduction in intra‐guild predation and competition. The irruption of mesopredators that follows the removal of top‐order predators can have detrimental impacts on the prey of the mesopredators. Here we investigated the mechanisms via which the presence of a top‐order predator can benefit prey species. We tested predictions made according to the MRH and foraging theory by contrasting the abundances of an invasive mesopredator (red fox Vulpes vulpes) and an endangered prey species (dusky hopping mouse Notomys fuscus), predator diets, and N. fuscus foraging behaviour in the presence and absence of a top‐predator (dingo Canis lupus dingo). As predicted by the MRH, foxes were more abundant where dingoes were absent. Dietary overlap between sympatric dingoes and foxes was extensive, and fox was recorded in 1 dingo scat possibly indicating intra‐guild predation. Notomys fuscus were more likely to occur in fox scats than dingo scats and as predicted by the MRH N. fuscus were less abundant in the absence of dingoes. The population increase of N. fuscus following rainfall was dampened in the absence of dingoes suggesting that mesopredator release can attenuate bottom‐up effects, although it remains conceivable that differences in grazing regimes associated with dingo exclusion could have also influenced N. fuscus abundance. Notomys fuscus exhibited lower giving‐up densities in the presence of dingoes, consistent with the prediction that their perceived risk of predation would be lower and foraging efficiency greater in the presence of a top‐predator. Our results suggest that mesopredator suppression by a top predator can create a safer environment for prey species where the frequency of fatal encounters between predators and prey is reduced and the non‐consumptive effects of predators are lower.  相似文献   

19.
  1. Closely related predator species often share several prey items, making it hard to differentiate the effects on their feeding habits of variation in food availability and of competition. We hypothesised that we could overcome this obstacle by quantifying and comparing nutritional niches.
  2. We reviewed dietary studies that assessed the relative bulk of each food item, as either per cent biomass or per cent mean volume, in the diet of two closely related species, pine marten Martes martes and stone marten Martes foina, and calculated the nutrient profiles (intakes of protein, lipids and carbohydrates) of each diet.
  3. Both martens’ diets were tightly clustered (mean values: 47% of energy from protein, 39% from lipid, and 14% from carbohydrate). In allopatry, the nutritional niches of the two species did not differ, but in sympatry, the stone marten ate more carbohydrates and less protein than the pine marten. In allopatry, the protein intake of the stone marten remained high (45–52%) in very different habitats, from cultivated lowland to Alpine forests.
  4. Our data suggest that stone marten frugivory may, at least partially, be the result of interspecific competition. By analysing dietary data in the framework of nutritional ecology, we could compare the feeding requirements of pine martens and stone martens more effectively than by using classical estimates of trophic niche overlap at the food item level. This approach may help to shed light on the trophic relationships of other competing species.
  相似文献   

20.
An ability to mount rapid evolutionary responses to environmental change may be necessary for species persistence in a human-dominated world. We present evidence of the possibility of such contemporary evolution in the anti-predator behaviour of the critically endangered Santa Cruz Island fox Urocyon littoralis . In 1994, golden eagles colonized Santa Cruz Island, CA and devastated the predator-naïve, endemic island fox population by 95% within 10 years. In 1992, just before the arrival of golden eagles, foxes showed substantial diurnal activity, but diurnal activity was 37.0% lower in 2003–2007, after golden eagle colonization; concurrently, overall activity declined and nocturnal activity increased. Moreover, on nearby Santa Catalina Island, where golden eagles were absent but where the fox population recently crashed due to a disease epidemic, remaining foxes were significantly more diurnally active than were those on Santa Cruz Island. The weight of evidence suggests that the change in activity pattern was a response to predation, not to low population density, and that this was probably a heritable rather than a learned behavioural trait. This behavioural change may allow for prolonged island fox persistence, but also potentially represents a loss of behavioural diversity in fox populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号