首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The Blue Mountains water skink (Eulamprus leuraensis; Scincidae) is restricted to less than 40 fragmented swamp sites, all within the Blue Mountains and Newnes Plateau areas of New South Wales, Australia. Climate change is expected to increase fire frequency in the area, potentially degrading habitat quality for this endangered reptile. We quantified lizard abundances in 12 swamps using standardized surveys, and constructed a Global Information System (GIS) database to determine fire‐histories for each swamp since 1967. The abundance of Blue Mountains water skinks was negatively correlated with fire frequency, but not with time since fire. Indirect impacts of fire (mediated via shifts in vegetation density, moisture levels, prey availability and post‐fire predation) may be more important than direct effects in these cool, moist habitats. Although lizards were less common in swamps close to urban areas, and less common in frequently burnt areas, viable populations of this endangered reptile still persist even in anthropogenically disturbed swamps and in swamps that have experienced up to four fires in 20 years. Future research could usefully extend these analyses to other swamps in the locality, and explore the broader impacts of fire regimes on the distinctive flora and fauna of this threatened ecological community.  相似文献   

2.
In our 2011 synthesis (Bowman et al., Journal of Biogeography, 2011, 38 , 2223–2236), we argued for a holistic approach to human issues in fire science that we term ‘pyrogeography’. Coughlan & Petty (Journal of Biogeography, 2013, 40 , 1010–1012) critiqued our paper on the grounds that our ‘pyric phase’ model was built on outdated views of cultural development, claiming we developed it to be the unifying explanatory framework for all human–fire sciences. Rather, they suggest that ‘historical ecology’ could provide such a framework. We used the ‘pyric transition’ for multiple purposes but did not offer it as an exclusive explanatory framework for pyrogeography. Although ‘historical ecology’ is one of many useful approaches to studying human–fire relationships, scholars should also look to political and evolutionary ecology, ecosystems and complexity theories, as well as empirical generalizations to build an interdisciplinary fire science that incorporates human, ecological and biophysical dimensions of fire regimes.  相似文献   

3.
ABSTRACT Wintering Henslow's Sparrows (Ammodramus henslowii) are generally associated with open grasslands. Results of small‐scale, regionally specific studies have not revealed larger‐scale abundance patterns, but they have shown regional differences in habitat selection. Our objective was to quantify Henslow's Sparrow abundance and vegetation associations across Louisiana, an area that includes multiple types of grassland habitats. Bird densities in longleaf pine savannas of eastern and western Louisiana were over 1.5 times higher than in northern prairies and over 13 times higher than at a site in southwestern Louisiana. The responses of Henslow's Sparrows to fire differed between eastern and western savannas, with abundance increasing three fold over the first 3 yrs after fire in the west, and decreasing three fold over that interval in the east. In both areas, habitat became unsuitable by about 5 yrs after fire, probably due to woody encroachment and loss of herbaceous plants. For sites that contained Henslow's Sparrows at least once during our study, habitat modeling revealed that neither vegetation structure nor plant species composition was important in predicting the occurrence of Henslow's Sparrows within sites or abundance among sites throughout the state, perhaps due to the variety of habitats sampled. Our results suggest that longleaf pine savannas are the most important grasslands for wintering Henslow's Sparrows in Louisiana and that overwintering habitat is probably selected based on regionally specific vegetation features. Optimal fire intervals may vary regionally, particularly between mesic flatwoods savannas and drier upland savannas, perhaps due to different rates of biomass accumulation. Management for Henslow's Sparrows should be based on region‐specific studies, recognizing that appropriate fire regimes may vary among regions.  相似文献   

4.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   

5.
6.
Re‐introduction is an important tool for recovering endangered species; however, the magnitude of genetic consequences for re‐introduced populations remains largely unknown, in particular the relative impacts of historical population bottlenecks compared to those induced by conservation management. We characterize 14 microsatellite loci developed for the Seychelles paradise flycatcher and use them to quantify temporal and spatial measures of genetic variation across a 134‐year time frame encompassing a historical bottleneck that reduced the species to ~28 individuals in the 1960s, through the initial stages of recovery and across a second contemporary conservation‐introduction‐induced bottleneck. We then evaluate the relative impacts of the two bottlenecks, and finally apply our findings to inform broader re‐introduction strategy. We find a temporal trend of significant decrease in standard measures of genetic diversity across the historical bottleneck, but only a nonsignificant downward trend in number of alleles across the contemporary bottleneck. However, accounting for the different timescales of the two bottlenecks (~40 historical generations versus <1 contemporary generation), the loss of genetic diversity per generation is greater across the contemporary bottleneck. Historically, the flycatcher population was genetically structured; however, extinction on four of five islands has resulted in a homogeneous contemporary population. We conclude that severe historical bottlenecks can leave a large footprint in terms of sheer quantity of genetic diversity lost. However, severely depleted genetic diversity does not render a species immune to further genetic erosion upon re‐introduction. In some cases, the loss of genetic diversity per generation can, initially at least, be greater across re‐introduction‐induced bottlenecks.  相似文献   

7.
Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north‐western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)‐dominated mixed‐conifer forests in the central and northern plateau of the Sierra San Pedro Mártir, Baja California, Mexico. Methods Fire occurrence was reconstructed for 12 dispersed sites for a 290‐year period (1700–1990) from cross‐dated fire‐scarred samples extracted from live trees, snags and logs. Superposed epoch analysis was used to examine the relationships of tree‐ring reconstructions of drought, the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) with fire occurrence and extent. Results Years with no recorded fire scars were wetter than average. In contrast, years of widespread fires were dry and associated with phase changes of the PDO, usually from positive (warm) to negative (cold). The influence of the PDO was most evident during the La Niña phase of the ENSO. Widespread fires were also associated with warm/wet conditions 5 years before the fire. We hypothesize that the 5‐year lag between warm/wet conditions and widespread fires may be associated with the time necessary to build up sufficient quantity and continuity of needle litter to support widespread fires. Two periods of unusually high fire activity (1770–1800 and 1920–1950) were each followed by several decades of unusually low fire activity. The switch in each case was associated with strong phase changes in both PDO and ENSO. Main conclusions Climate strongly influences fire regimes in the mountains of north‐western Mexico. Wet/warm years are associated with little fire activity. However, these years may contribute to subsequent fire years by encouraging the production of sufficient needle litter to support more widespread fires that occur in dry/cool years.  相似文献   

8.
It is not known how the profoundly complex topography and habitat heterogeneity generated by the uplift of the Qinghai‐Tibetan Plateau (QTP) during the late Tertiary affected population genetic structure of endangered Taxus yunnanensis. In addition, the effects of habitat fragmentation due to anthropogenic disturbance on genetic diversity and population differentiation of this species have not been studied. T. yunnanensis is an ancient tree/shrub mainly distributed in southwest China. Recently, the species has suffered a sharp decline due to excessive logging for its famous anticancer metabolite taxol, resulting in smaller and more isolated populations. To understand the phylogeography and genetic consequences of habitat fragmentation of this endangered species, using 11 polymorphic microsatellites, we genotyped 288 individuals from 14 populations from a range‐wide sampling in China. Our results suggest that two different population groups that were once isolated have persisted in situ during glacial periods in both areas, and have not merged since. Habitat fragmentation has led to significant genetic bottlenecks, high inbreeding and population divergence in this species. The two different population groups of T. yunnanensis could be attributed to restricted gene flow caused through isolation by geographical barriers and by habitat heterogeneity during uplift of the QTP, or the existence of two separate glacial refugia during the Pleistocene. In situ and ex situ conservation of the two Evolutionarily Significant Units (ESUs), artificial gene flow between populations and a comprehensive understanding of the pollination system in this endangered species are suggested from this study.  相似文献   

9.
10.
The takahe (Porphyrio hochstetteri) is ahighly endangered flightless rail that isendemic to New Zealand. Only one remnantpopulation of takahe (120 adults) is left inthe wild in Fiordland, which has been thesource for introductions to four predator-freeislands. The objective of the present studywas to determine the mating system andamount of genetic variation in takahe usingmultilocus DNA profiling, in order to assist inthe management of the island populations. There was no evidence of extra-pair paternityfor the 27 (73%, n = 37) offspring towhich paternity could be resolved. Thepaternity of the remaining 10 offspring couldnot be resolved due to low levels ofminisatellite DNA variation, but in none wasthe resident male excluded. Overall, the DNAresults along with behavioral and life historyinformation indicate that extra-pairfertilizations should be rare or absent, andtakahe join a small but growing list oflong-lived species of birds that have beenshown to exhibit genetic monogamy. Inaddition, the levels of minisatellite DNAvariation detected in takahe are low relativeto those reported for most other known outbredavian populations, and are consistent with theevidence of the takahe's persistence as asmall, isolated population in Fiordland over atleast the last 100 years. The low geneticvariation is discussed in relation to possibleevidence of environment depended inbreedingdepression in translocated island populationsof takahe.  相似文献   

11.
Understanding variation in food requirements of wild animals is of central importance in population ecology and conservation, as it helps to identify where and when food may be limiting. Studies on diet variation or prey provisioning rates may give useful insights when direct information on prey availability is lacking. We assess spatial and temporal variation in the diet of an endangered predator, the Black Harrier Circus maurus. This raptor is endemic to southern Africa and specializes on small mammals but also feeds on birds and reptiles as alternative prey. Using data on 1679 prey identified in 953 pellets collected in inland and coastal regions from 2006 to 2015, we show that diet composition changed little throughout the breeding season in the coastal region, whereas there was a marked seasonal decline in the occurrence of small mammal prey in the inland region, with a concomitant increase in alternative prey. The proportion of small mammals in the diet declined with increasing maximum temperature, the latter being highest at the inland region late in the breeding season. Using camera recordings at nests in 2014, we further analysed daily patterns of prey provisioning to nestlings. A marked reduction in small mammal provisioning rates occurred during the middle of the day in the hotter inland region but not in the cooler coastal region. Reduced availability of the primary prey, small mammals, in hotter conditions, through a reduction in activity or overall abundance, could explain these patterns. Finally, we show a positive relationship between winter rainfall and interannual differences in the proportion of small mammals in the diet of Black Harriers breeding in the coastal region, suggesting relationships between diet and prey abundance that are mediated through rainfall. We discuss the need to consider spatial variation in food availability in conservation strategies.  相似文献   

12.
The effects of anthropogenic landscape change on genetic population structure are well studied, but the temporal and spatial scales at which genetic structure can develop, especially in taxa with high dispersal capabilities like birds, are less well understood. We investigated population structure in the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered wetland specialist bird on the island of O`ahu (Hawai`i, USA). Hawaiian gallinules have experienced a gradual population recovery from near extinction in the 1950s, and have recolonized wetlands on O`ahu in the context of a rapidly urbanizing landscape. We genotyped 152 Hawaiian gallinules at 12 microsatellite loci and sequenced a 520 base-pair fragment of the ND2 region of mitochondrial DNA (mtDNA) from individuals captured at 13 wetland locations on O`ahu in 2014–2016. We observed moderate to high genetic structuring (overall microsatellite FST?=?0.098, mtDNA FST?=?0.248) among populations of Hawaiian gallinules occupying wetlands at very close geographic proximity (e.g., 1.5–55 km). Asymmetry in gene flow estimates suggests that Hawaiian gallinules may have persisted in 2–3 strongholds which served as source populations that recolonized more recently restored habitats currently supporting large numbers of birds. Our results highlight that genetic structure can develop in taxa that are expanding their range after severe population decline, and that biologically significant structuring can occur over small geographic distances, even in avian taxa.  相似文献   

13.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

14.
Effective spatial classification of freshwater biodiversity remains a worldwide conservation challenge. The isolating nature of catchment boundaries over evolutionary timescales makes them potentially important in defining natural units for biodiversity management. We sought to clarify biogeographical relationships amongst drainages within Australia's biodiverse mid‐eastern coastal region (Fitzroy, Burnett, and Mary Catchments) where freshwater communities face considerable urban pressure, using a locally endemic riverine specialist, the white‐throated snapping turtle, Elseya albagula. Mitochondrial and nuclear microsatellite data sets were employed to investigate past and present influences on population connectivity and to identify units for management. Populations within catchments were largely well connected genetically. However, the Fitzroy Catchment contained a distinct genetic lineage, deeply divergent from a second lineage present across the Burnett and Mary Catchments. The two lineages can be considered evolutionarily significant units that reflect historical isolation of the Fitzroy and recent coalescence of the Burnett‐Mary Catchments during lowered Pleistocene sea levels. Congruence with geological evidence and patterns reported for fish and macroinvertebrates supports a shared biogeographical history of a diverse regional biota. This work highlights the need for better spatial classification of freshwater biodiversity at local as well as regional scales, including recognition of potentially cryptic diversity amongst individual river drainages. © 2013 The Linnean Society of London  相似文献   

15.
Abstract Fire is a significant feature of Australia's savannas. Its use is being encouraged for cattle rangeland management, but there is little knowledge of the ecological effects of prescribed fire regimes on native biodiversity. The responses of ant communities to five experimental fire regimes over 2 years are reported from the Victoria River District in the semi‐arid tropics of northern Australia. The experiment was stratified at two levels: soil type (red and black) and fire treatment (unburnt; burnt twice in successive years in early (May) or late (October) dry season and unburnt thereafter; and burnt twice, 3 years apart, in early or late dry season). Ants were sampled twice in April, corresponding with the end of the 1997 and 1998 wet seasons. Ant species richness was not responsive to fire treatment, but reduced with time since fire on black soil. Total ant abundance also reduced with time since fire on the black soil, with significant different abundances in burnt versus unburnt plots in the 1998 sample. Soil type and sampling time had the greatest influence on ant community composition in multivariate analysis than did fire regime, although there were moderate gradients of time since fire with the black soil plots. The abundance of 19 species were significantly different between fire regimes in anova , 13 on red soil and six on black soil. The abundance of eight species (four each on red and black soil) changed significantly with time since fire, with seven promoted by burning. Ant functional group profiles changed little with fire. Total ant abundance and richness had significant relationships with key pasture species and vegetative variables. The responses of ants largely recapitulated those of plants, birds and reptiles on the same plots. It is envisaged that ants will have an important role to play in the sustainable management of Australia's rangelands aiding the off‐reserve conservation of biodiversity.  相似文献   

16.
The butterfly Boloria aquilonaris is a specialist of oligotrophic ecosystems. Population viability analysis predicted the species to be stable in Belgium and to collapse in the Netherlands with reduced host plant quality expected to drive species decline in the latter. We tested this hypothesis by rearing B. aquilonaris caterpillars from Belgian and Dutch sites on host plants (the cranberry, Vaccinium oxycoccos). Dutch plant quality was lower than Belgian one conferring lower caterpillar growth rate and survival. Reintroduction and/or supplementation may be necessary to ensure the viability of the species in the Netherlands, but some traits may have been selected solely in Dutch caterpillars to cope with gradual changes in host plant quality. To test this hypothesis, the performance of Belgian and Dutch caterpillars fed with plants from both countries were compared. Dutch caterpillars performed well on both plant qualities, whereas Belgian caterpillars could not switch to lower quality plants. This can be considered as an environmentally induced plastic response of caterpillars and/or a local adaptation to plant quality, which precludes the use of Belgian individuals as a unique solution for strengthening Dutch populations. More generally, these results stress that the relevance of local adaptation in selecting source populations for relocation may be as important as restoring habitat quality.  相似文献   

17.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species.  相似文献   

18.
19.
20.
Mycorrhizal symbiosis is a key factor influencing aspects of grassland and savanna structure and functioning including plant growth, competition, population and community dynamics, and responses to fire and herbivory. This study assessed the effects of fire on mycorrhizal symbiosis and root system architecture (RSA) in South African savanna grasses. Eighteen grass species were sampled across contrasting fire frequency treatments in the Kruger National Park experimental burn plots. All eighteen species studied were highly colonized by arbuscular mycorrhizal fungi (AMF). Both mycorrhizal symbiosis and RSA were strongly affected by fire, with an increase in AMF colonization and a decrease in root branching and fine root development with decreasing fire frequency. Greater water limitation in frequently burned savanna may result in greater fine root development, thus reducing plant dependency on AMF for acquisition of soil resources. Reduced mycorrhizal colonization in frequently burned savanna may also be driven by higher phosphorus : nitrogen ratios, or indirect effects related to higher grazing intensities in frequently burned sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号