共查询到20条相似文献,搜索用时 15 毫秒
1.
Round gobies Neogobius melanostomus were observed readily consuming soft tissue from carcasses of larger fishes under both laboratory and field conditions. Consumption normally progressed in a typical sequence, starting with soft and easily accessible tissues such as the eyes, followed by puncture of the abdominal cavity, gut consumption and then muscle consumption. Carcass feeding has not previously been seen in N. melanostomus and has potential consequences for transfer of nutrients and contaminants. 相似文献
2.
稳定性同位素技术在生态学上的应用 总被引:9,自引:2,他引:9
稳定性同位素技术早在20世纪70年代末期就被引入到生态学领域。最初是利用植物稳定性碳同位素的差异。开展了许多有关营养流动方面的研究;到90年代,稳定性碳和氮同位素被用来分析动物的食性、营养级位置关系以及食物链结构;本世纪初,由于技术的进步,稳定性同位素(特别是氢同位素)被用来开展动物迁徙习性方面的研究。到目前为止,国内有关这方面的研究还鲜有报道,而且对自然界存在的稳定性同位素的理解还存在一定偏差。本文主要介绍了稳定性同位素效应及其分馏原理、稳定性同位素在示踪动物食性信息、确定营养级位置关系、分析食物网结构以及研究动物迁徙生态学中的作用等方面的内容。 相似文献
3.
Yuichi I. Naito Ayako Morita Kazumi Natsuhara Kiyoshi Tadokoro Jun Baba Shingo Odani Eriko Tomitsuka Katsura Igai Takumi Tsutaya Minoru Yoneda Andrew R. Greenhill Paul F. Horwood Kevin W. Soli Suparat Phuanukoonnon Peter M. Siba Masahiro Umezaki 《American journal of physical anthropology》2015,158(3):359-370
4.
1. To assess the use of stable nitrogen isotopes (δ15N) for reconstructing trophic relationships in planktonic food webs, crustacean zooplankton species and pelagic dissolved and particulate matter were analysed in 14 subarctic lakes in northern Sweden. The lakes are situated along an altitudinal gradient and show a substantial variation in nutrient content and energy mobilization by bacterioplankton and phytoplankton. 2. The δ15N of dissolved and particulate matter was comparatively low, suggesting efficient N recycling and low losses of depleted N from the pelagic zone of these unproductive lakes. 3. Copepods had a systematically higher δ15N than cladocerans, with an average difference of 3.1–4.9‰ within lakes, implying different trophic positions of the two groups. Comparisons of nitrogen pools and energy fluxes suggest that the low cladoceran δ15N was a result of feeding on bacteria. 4. The difference in δ15N between copepods and cladocerans declined with decreasing bacterioplankton production among lakes, due either to increasing trophic isotope fractionation or decreasing relative importance of bacteria in the diet of cladocerans. 相似文献
5.
6.
新疆准噶尔盆地荒漠草地水源圈植物群落退化格局 总被引:1,自引:0,他引:1
游牧民定居放牧是目前主要的放牧方式,导致水源圈在中国北方干旱半干旱区草场上普遍存在。2014年5月底至6月初,在新疆北部荒漠草地上,以一个典型的牧场水源点为中心,在8个方向上设置50、100、200、400、800和1200 m共6个采样距离进行植物群落调查取样。通过分析植物群落的组成、物种重要值、丰富度以及群落的盖度、高度和地上生物量的变化特征,期望为荒漠草地退化生态系统的恢复和可持续管理提供科学依据。结果表明:随着与水源点距离的减少、放牧强度的增加,荒漠草地植物群落特征呈现明显梯度变化,建群植物博洛塔绢蒿优势度逐渐降低,1年生植物优势度逐渐增加;植物群落、多年生草本植物和1年生草本植物的物种丰富度逐渐增加;群落总盖度逐渐降低,与建群植物博洛塔绢蒿的盖度显著正相关。1年生植物和有毒植物骆驼蓬在水源点附近优势度增加,说明放牧导致水源点附近地上植物群落趋于退化。因此,在这一地区开展游牧民定居导致水源圈大量出现,可能加剧荒漠草地的退化。 相似文献
7.
本研究在原来CASA模型的基础上,对模型参数最大光能利用率和水分胁迫系数的算法进行了改进,利用改进后的CASA模型模拟了2010年内蒙古锡林郭勒盟草原植被净初级生产力(NPP),并用地面实测样方数据对改进后的模型进行精度验证。结果表明:改进的CASA模型可应用于内蒙古草原小尺度植被NPP的估测,模拟NPP值与地面实测值之间的相关性达到显著水平(R2=0.829,P0.05);2010年内蒙古锡林郭勒盟草原植被生长季(4—10月)NPP为284.64 g C·m-2·a-1,不同地区年均NPP相差较大,东北部东乌珠穆沁旗草原NPP高达411.11 g C·m-2·a-1,而西北部的二连浩特市草原NPP仅为158.87 g C·m-2·a-1;整体上,锡林郭勒盟草原的NPP由东向西逐步递减,这与该区域水热条件限制基本一致;由于降水量的时滞效应,该年度内NPP出现两次峰值;2010年锡林郭勒境内草原NPP集中分布在250~350 g C·m-2·a-1,草甸草原的NPP最大,典型草原次之,荒漠草原最小。 相似文献
8.
崂山湾人工鱼礁区星康吉鳗摄食生态及食物网结构 总被引:2,自引:0,他引:2
根据2015年4月至2017年1月于崂山湾人工鱼礁区地笼网和延绳钓捕获的279尾星康吉鳗样本,从胃含物组成、食性类型、摄食等级、营养生态位和营养级等方面对其摄食生态进行研究,同时结合海区许氏平鲉、大泷六线鱼、斑头鱼、褐菖鲉、花鲈等9种鱼类的胃含物分析结果,构建人工鱼礁区鱼类关键种的简化食物网模型.食性研究结果表明:星康吉鳗共摄食7类30余种饵料,虾类是其最主要的饵料类群,其次为鱼类和头足类,大泷六线鱼、方氏云鳚、鹰爪虾、玉筋鱼和日本鼓虾等是其优势饵料.星康吉鳗的饵料生物组成随肛长和季节发生显著变化.四季均以鱼类和虾类为主,春季胃含物中包括头足类,秋季包括头足类和蟹类,冬季亦有蟹类出现.肛长≤120 mm的星康吉鳗主要摄食鱼卵和鹰爪虾,120~130 mm肛长组主要摄食玉筋鱼和日本鼓虾,肛长>130 mm的星康吉鳗主要摄食大泷六线鱼和方氏云鳚.其摄食强度也随季节和肛长而变化,空胃率的季节性差异显著,平均胃饱满系数的季节性差异不显著,不同肛长组的空胃率和平均胃饱满系数均不存在显著差异.人工鱼礁区简化食物网结构显示:鱼类关键种的营养级均在3级以上,星康吉鳗的营养级为4.636,处于海区食物网的最顶端.虾类、蟹类、端足类和软体动物等是鱼类关键种的主要饵料,甲壳类、方氏云鳚、大泷六线鱼和玉筋鱼是高营养级鱼类花鲈和星康吉鳗的主要饵料. 相似文献
9.
Accurate identification of species that are consumed by vertebrate predators is necessary for understanding marine food webs. Morphological methods for identifying prey components after consumption often fail to make accurate identifications of invertebrates because prey morphology becomes damaged during capture, ingestion and digestion. Another disadvantage of morphological methods for prey identification is that they often involve sampling procedures that are disruptive for the predator, such as stomach flushing or lethal collection. We have developed a DNA-based method for identifying species of krill (Crustacea: Malacostraca), an enormously abundant group of invertebrates that are directly consumed by many groups of marine vertebrates. The DNA-based approach allows identification of krill species present in samples of vertebrate stomach contents, vomit, and, more importantly, faeces. Utilizing samples of faeces from vertebrate predators minimizes the impact of dietary studies on the subject animals. We demonstrate our method first on samples of Adelie penguin (Pygoscelis adeliae) stomach contents, where DNA-based species identification can be confirmed by prey morphology. We then apply the method to faeces of Adelie penguins and to faeces of the endangered pygmy blue whale (Balaenoptera musculus brevicauda). In each of these cases, krill species consumed by the predators could be identified from their DNA present in faeces or stomach contents. 相似文献
10.
Masashi Tsuchiya Yoshito Chikaraishi Hidetaka Nomaki Yoko Sasaki Akihiro Tame Katsuyuki Uematsu Naohiko Ohkouchi 《Ecology and evolution》2018,8(16):8380-8395
The abundance and biomass of benthic foraminifera are high in intertidal rocky‐shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky‐shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky‐shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence. 相似文献
11.
1. We analysed the phospholipid fatty acid (PLFA) profiles of seston and of the dominant zooplankter, Daphnia longispina, through the open water period in a small, dystrophic lake to investigate seasonal variation in the diet of Daphnia. Phytoplankton, heterotrophic bacteria, green sulphur bacteria and methane‐oxidizing bacteria (MOB) were all present in the water column of the lake, and previous studies have indicated that vertically migrating Daphnia can exploit all these potential food sources. 2. For adult Daphnia, although there was some correspondence between the PLFA profile of Daphnia and the concurrent seston PLFA profile, strongest correlations were between the Daphnia PLFA profile and those of potential food sources determined 7 days earlier. This interval presumably reflects the time it takes for adult Daphnia to turn over their fatty acid pool. 3. A correlation between the concentration of polyunsaturated fatty acids (PUFAs) in the epi‐ and metalimnion and measured primary production indicated that, within the total PLFA fraction, PUFAs can be useful biomarkers for phytoplankton in food‐web studies. Algal PUFAs contributed appreciably to total PLFAs in adult Daphnia during spring and summer, but less so in autumn. 4. Daphnia in the lake actually reached their highest biomass in autumn, when methanotrophic activity was also highest, and the highest magnitude of MOB‐specific PLFAs was recorded in both adult and juvenile Daphnia. A strong relationship existed between δ13C values of Daphnia reported previously and the proportion of MOB‐specific PLFAs in Daphnia. Autumnal mixing evidently stimulates bacterial oxidation of methane from the hypolimnion, and exploitation of the methanotrophic bacteria sustains a high Daphnia population late in the season. 5. Our results show that the PLFA composition of freshwater zooplankton like Daphnia corresponds rather well to that of their in situ diet of phytoplankton and bacteria, with a lag period of around 1 week in the case of adult animals. The PLFA profile of seston revealed the dominant available food sources, and relating these to the Daphnia PLFA profile provided insights into seasonal changes in Daphnia diet. 相似文献
12.
生物量在营养级上的分布作为一种生态系统的指示指标,可以指示因人类干扰和环境变化导致的生态系统的改变,揭示生态系统功能的差异性。调查了冬季大亚湾不同区域各粒级浮游生物的生物量大小及其氮稳定同位素丰度比值(δ15N)与环境因子的关系,通过构建营养级谱比较了大亚湾不同区域浮游食物网结构的差异。研究结果显示,浮游生物的δ15N值基本随着粒径的增大而增加,但100-212 μm粒级的δ15N值为5.08‰,略低于1.2-100 μm粒级的5.58‰。> 500 μm 粒级的δ15N值最大,平均为8.16‰。在湾口和敞水带的S1、S9站各粒级的δ15N都要小于其他站位,而各粒级δ15N的最大值一般都出现在湾底的S8站。在各粒级颗粒物中,1.2-100 μm粒级的δ15N最适合用来指示水体的环境状况,受陆源输入影响较小的海域的δ15N值小。生物量与氮稳定同位素构建的营养级谱的斜率与总溶解氮的浓度和氮磷比呈显著负相关关系。处于湾口的站位的营养级谱的谱线要更陡峭一些,表明该处捕食者/被捕食者的比率更低。 相似文献
13.
Stable isotopes are a powerful tool for ecologists, often used to assess contributions of different sources to a mixture (e.g. prey to a consumer). Mixing models use stable isotope data to estimate the contribution of sources to a mixture. Uncertainty associated with mixing models is often substantial, but has not yet been fully incorporated in models. We developed a Bayesian-mixing model that estimates probability distributions of source contributions to a mixture while explicitly accounting for uncertainty associated with multiple sources, fractionation and isotope signatures. This model also allows for optional incorporation of informative prior information in analyses. We demonstrate our model using a predator–prey case study. Accounting for uncertainty in mixing model inputs can change the variability, magnitude and rank order of estimates of prey (source) contributions to the predator (mixture). Isotope mixing models need to fully account for uncertainty in order to accurately estimate source contributions. 相似文献
14.
A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids 总被引:5,自引:0,他引:5
Matthew S. Fantle Ana I. Dittel Sandra M. Schwalm Charles E. Epifanio Marilyn L. Fogel 《Oecologia》1999,120(3):416-426
The stable isotope compositions (C and N) of plants and animals of a marsh dominated by Spartina alterniflora in the Delaware Estuary were determined. The study focused on the juvenile stage of the Atlantic blue crab, Callinectes sapidus, and the importance of marsh-derived diets in supporting growth during this stage. Laboratory growth experiments and field
data indicated that early juvenile blue crabs living in the Delaware Bay habitat fed primarily on zooplankton, while marsh-dwelling
crabs, which were enriched in 13C relative to bay juveniles, utilized marsh-derived carbon for growth. In laboratory experiments, the degree to which juvenile
blue crabs isotopically fractionated dietary nitrogen, as well as the growth rate, depended on the protein quality of the
diet. The range of δ13C of amino acids in laboratory-reared crabs and their diets was almost 20‰, similar to the isotopic range of amino acids of
other organisms. In laboratory studies, the δ13C of nonessential and essential amino acids in the diet were compared to those in juvenile crabs. Isotopic fractionation at
the molecular level depended on diet quality and the crabs' physiological requirements. Comparison of whole-animal isotope
data with individual amino acid C isotope measurements of wild juvenile blue crabs from the bay and marsh suggested a different
source of total dietary carbon, yet a shared protein component, such as zooplankton.
Received: 1 July 1998 / Accepted: 15 March 1999 相似文献
15.
J. G. Calado D. M. Matos J. A. Ramos F. Moniz F. R. Ceia J. P. Granadeiro V. H. Paiva 《Journal of avian biology》2018,49(1)
Niche segregation between similar species will result from an avoidance of competition but also from environmental variability, including nowadays anthropogenic activities. Gulls are among the seabirds with greater behavioural plasticity, being highly opportunistic and feeding on a wide range of prey, mostly from anthropogenic origin. Here, we analysed blood and feather stable isotopes combined with pellet analysis to investigate niche partitioning between Audouin's gull Larus audouinii and yellow‐legged gull Larus michahellis breeding in sympatry at Deserta Island, southern Portugal, during 2014 and 2015. During the breeding season there was considerable overlap in the adults’ diet, as their stable isotope values of blood and primary feather (P1) did not differ, and their pellets were comprised mainly by marine fish species. However, Audouin's gulls presented higher occurrences of pelagic fish, while yellow‐legged gulls fed more on demersal fish, insects, and refuse. SIAR mixing models also estimated a higher proportion of demersal fish in the diet of yellow‐legged gulls. We also found differences between the two gull species in chicks’ feathers, suggesting that Audouin's gull adults selected prey with lower carbon isotope values to feed their young. Secondary feather (S8) of Audouin's gull presented higher isotope values compared to yellow‐legged gulls, indicating different foraging areas (δ13C) and/ or trophic levels (δ15N) between the two species in the non‐breeding season. During both the all‐year and non‐breeding periods the yellow‐legged gull showed a broader isotopic niche width than Audouin's gull in 2013, and in 2014 the two gull species exhibited different isotopic niche spaces. Our study suggests that both gull species foraged in association with fisheries during the breeding season. In this sense, a discard ban implemented under the new European Union Common Fisheries Policy may lead to a food shortage, therefore future research should closely monitor the population dynamics of Audouin's and yellow‐legged gulls. 相似文献
16.
Devin L. Johnson Michael T. Henderson Alastair Franke George J. F. Swan Robbie A. McDonald David L. Anderson Travis L. Booms Cory T. Williams 《Ecology and evolution》2023,13(1):e9709
- Stable isotope mixing models (SIMMs) are widely used for characterizing wild animal diets. Such models rely upon using accurate trophic discrimination factors (TDFs) to account for the digestion, incorporation, and assimilation of food. Existing methods to calculate TDFs rely on controlled feeding trials that are time-consuming, often impractical for the study taxon, and may not reflect natural variability of TDFs present in wild populations.
- We present TDFCAM as an alternative approach to estimating TDFs in wild populations, by using high-precision diet estimates from a secondary methodological source—in this case nest cameras—in lieu of controlled feeding trials, and provide a framework for how and when it should be applied.
- In this study, we evaluate the TDFCAM approach in three datasets gathered on wild raptor nestlings (gyrfalcons Falco rusticolus; peregrine falcons Falco perigrinus; common buzzards Buteo buteo) comprising contemporaneous δ13C & δ15N stable isotope data and high-quality nest camera dietary data. We formulate Bayesian SIMMs (BSIMMs) incorporating TDFs from TDFCAM and analyze their agreement with nest camera data, comparing model performance with those based on other relevant TDFs. Additionally, we perform sensitivity analyses to characterize TDFCAM variability, and identify ecological and physiological factors contributing to that variability in wild populations.
- Across species and tissue types, BSIMMs incorporating a TDFCAM outperformed any other TDF tested, producing reliable population-level estimates of diet composition. We demonstrate that applying this approach even with a relatively low sample size (n < 10 individuals) produced more accurate estimates of trophic discrimination than a controlled feeding study conducted on the same species. Between-individual variability in TDFCAM estimates for ∆13C & ∆15 N increased with analytical imprecision in the source dietary data (nest cameras) but was also explained by natural variables in the study population (e.g., nestling nutritional/growth status and dietary composition).
- TDFCAM is an effective method of estimating trophic discrimination in wild animal populations. Here, we use nest cameras as source dietary data, but this approach is applicable to any high-accuracy method of measuring diet, so long as diet can be monitored over an interval contemporaneous with a tissue's isotopic turnover rate.
17.
1. Rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) are widespread and invasive salmonids with important lethal effects as predators, although indirect effects are also possible. We used stable isotope analyses (δ15N, δ13C) to explore how the density of invasive trout in 25 Patagonian lakes alters the trophic niche (TN) of a widespread native fish, Galaxias platei (Galaxiidae). We also explored how the density of the galaxiid influences the TN of invasive trout. 2. We quantified two aspects of the TN: (i) the proportion of littoral carbon (PL) and (ii) trophic height (TH) (i.e. the ‘height’ at which the fish feeds in the food web). We related these measures of TN in a given species to the density of other species (as estimated by catch‐per‐unit‐effort). 3. As G. platei body size increased, their PL increased (increasing littoral feeding) in several lakes. However, none of the fish species investigated showed changes in PL with increasing density of the other fish species. TH increased with body size in all three species. In addition, the TH of large G. platei declined with increasing trout density and, reciprocally, the TH of large S. trutta decreased with decreasing G. platei density. 4. The reciprocal effects of native and the invasive fish on TH were as large as a shift of one trophic level. This pattern is consistent with an exhaustion of galaxiid prey for both piscivorous G. platei and S. trutta in lakes with high trout density. 5. These finding support the suggested management strategy of culling trout from overpopulated lakes, which should simultaneously protect native fish and enhance a lucrative sport fishery for large trout. 相似文献
18.
Jacobus Vijverberg Maarten Boersma Wim L. T. van Densen Wim Hoogenboezem Eddy H. R. R. Lammens Wolf M. Mooij 《Hydrobiologia》1990,207(1):279-286
The interactions between the higher trophic levels in a shallow eutrophic lake were studied during the course of a year. Three fish species determined the main pathways of organic matter flow within the system: the predominantly planktivorous bream (Abramis brama), the obligate planktivorous smelt (Osmerus eperlanus), and the piscivorous pikeperch (Stizostedion lucioperca). Of the thirteen common zooplankton taxa Daphnia hyalina and cyclopoid copepods were utilized most by the planktivorous fish, while the large production of small cladocerans is almost left unutilized.The seasonal variations of production and consumption are large. This is mainly affected by seasonal variation of the water temperature. The production of O + smelt is efficiently utilized by the pikeperch. Being the most important zooplankton consumer, as well as the most important prey group, O + fish plays a key role in the Tjeukemeer food web. 相似文献
19.
1. Fatty acids (FAs) have been widely applied as trophic biomarkers in aquatic food web studies. However, current knowledge of inter‐ and intraspecific variation in consumer FA compositions across spatial and temporal scales is constrained to a few pelagic taxa. 2. We analysed the FAs of 22 taxa of benthic macroinvertebrates, zooplankton and fish collected from the littoral, pelagic and profundal habitats of nine boreal oligotrophic lakes over spring, summer and autumn. We quantified and compared the FA variance partitions contributed by species identity (i.e. an integrative effect of phylogenetic origin, life history and functional feeding guild of individual taxa), site and season using partial redundancy analysis both on all consumers and on benthic arthropods alone. 3. Species identity alone contributed 84.4 and 72.8% of explained FA variation of all consumers and benthic arthropods, respectively. Influences of site, season and all joint effects accounted for 0–11.3% only. Fatty acid profiles of primary consumers differentiated below class level, but those of predators were distinguishable only when they became more taxonomically distinct (i.e. among classes or higher). 4. Pelagic and profundal consumers showed stronger reliance on autochthonous resources than did their littoral counterparts as reflected by their higher ω3 to ω6 FA ratios. Polyunsaturated FAs (PUFAs) were increasingly retained with trophic levels, and saturated FAs (e.g. FA 16 : 0) gradually reduced. Ecologically, this trade‐off enhances the trophic transfer efficiency and confirms the importance of PUFA‐rich autotrophs in aquatic food webs. 5. Our findings indicate strong interspecific differences in FA requirements and assimilation among aquatic consumers from a wide range of taxonomic levels, habitats and lakes. Consumers were able to maintain homoeostasis in FA compositions across spatial and temporal changes in resource FAs, but consumer homoeostasis did not limit the effectiveness of FAs as trophic biomarkers. 相似文献