首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure, drift, and upstream movement of populations of benthic macroinvertebrates, in particular Synurella dentata Hubricht and Lirceus fontinalis Raf., were examined within a temperate spring ecosystem. Chemical and physical aspects of the springbrook were also investigated and life histories of the gammarids and asellids noted.Chemically and physically the spring proved both constant and predictable, much more so than other lotic systems.Species diversity was low from November through February and increased in March, April, and May. Equitability followed the same trends as species diversity. Both indices were most affected by large fluctuations in the populations of aquatic insects.Significant changes in the numbers of amphipods, isopods, and total macroinvertebrates was evident over a seven month period. Males were present in the isopod population year-round, but only from November to January in the amphipod population. Breeding by the isopods occurred throughout the year and peaked during winter. Amphipods copulated only in the late fall and early winter.Significant diel peaks in the amphipod, isopod, and total invertebrate drift negatively correlated with light intensity levels. Amphipods and isopods did not exhibit any preferential upstream movement during either the day or night; however, total macroinvertebrate upstream movement was greater at night. The total number of invertebrates moving upstream were lower than values reported from other lotic environments.  相似文献   

2.
1. Dispersal of propagules by waterbirds is thought to be important for wetland plants because of the abundance of birds and their frequent movements among aquatic habitats. Differences in bird characteristics (size, movement, feeding ecology) were expected to lead to different outcomes for plant dispersal. 2. We investigated heterogeneity in plant dispersal by ducks (Anas superciliosa, Anas gracilis, Anas castanea). We calculated the probability of transport of viable seeds by germinating propagules retrieved from feathers and feet (epizoochory) and the contents of the oesophagus, gizzard and lower gut (endozoochory). 3. The abundance and richness of seeds carried internally and externally did not differ among sympatric bird species. We used estimates from the literature of movements of Anas species to approximate dispersal kernels for the transport of plant propagules. 4. Heterogeneity in the abundance and movement ecology of disperser species will result in differing patterns and degrees of connectivity for wetland plant metacommunities. Sedentary waterfowl are likely to have an important role in replenishing propagules and connecting aquatic metacommunities over small distances. Nomadic waterfowl may facilitate long‐distance dispersal. We discuss the implications of differences between duck species in movement patterns for connectivity of aquatic plant metacommunities across landscapes.  相似文献   

3.
In littoral zones of aquatic systems, submerged macrophytes have marked structural variation that can modify the foraging activity of planktivores. Swimming and feeding behavior of Pseudorasbora parva and Rasbora daniconius (Cyprinidae) on their prey Daphnia pulex and Artemia salina, respectively, was studied in a series of laboratory experiments with varying stem densities. A range of stem densities was tested for each of the two species to compare the effect of simulated macrophytes on prey attack rates and swimming speed, average stem distance (D) was measured in fish body lengths for each of the two fish species. We found that, with reducing average stem distance, the attack rate decreased in the similar trend and this trend was similar for both fish species. However, the species differed in the degree to which swimming activity was hindered at increased stem densities, and this was due to species-specific differences in the distance moved with one tail beat. Therefore, we conclude that the reductions in swimming speed with reduced average stem distance are due to the differences in fish movement per tail beat.  相似文献   

4.
Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health.  相似文献   

5.
Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark–release–recapture method (marking 2,881 adults) and exuviae collection with the Jolly–Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape.  相似文献   

6.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

7.
Dispersal, the movement of an individual away from its natal or breeding ground, has been studied extensively in birds and mammals to understand the costs and benefits of movement behavior. Whether or not invertebrates disperse in response to such attributes as habitat quality or density of conspecifics remains uncertain, due in part to the difficulties in marking and recapturing invertebrates. In the upper Bay of Fundy, Canada, the intertidal amphipod Corophium volutator swims at night around the new or full moon. Furthermore, this species is regionally widespread across a large spatial scale with site-to-site variation in population structure. Such variation provides a backdrop against which biological determinants of dispersal can be investigated. We conducted a large-scale study at nine mudflats, and used swimmer density, sampled using stationary plankton nets, as a proxy for dispersing individuals. We also sampled mud residents using sediment cores over 3 sampling rounds (20–28 June, 10–17 July, 2–11 August 2010). Density of swimmers was most variable at the largest spatial scales, indicating important population-level variation. The smallest juveniles and large juveniles or small adults (particularly females) were consistently overrepresented as swimmers. Small juveniles swam at most times and locations, whereas swimming of young females decreased with increasing mud presence of young males, and swimming of large juveniles decreased with increasing mud presence of adults. Swimming in most stages increased with density of mud residents; however, proportionally less swimming occurred as total mud resident density increased. We suggest small juveniles move in search of C. volutator aggregations which possibly act as a proxy for better habitat. We also suggest large juveniles and small adults move if potential mates are limiting. Future studies can use sampling designs over large spatial scales with varying population structure to help understand the behavioral ecology of movement, and dispersal in invertebrate taxa.  相似文献   

8.
Animal movement and dispersal are key factors in population dynamics and support complex ecosystem processes like cross‐boundary subsidies. Juvenile dispersal is an important mechanism for many species and often involves navigation in unfamiliar habitats. For species that metamorphose, such as amphibians, this transition from aquatic to terrestrial environments involves the growth and use of new morphological traits (e.g., legs). These traits strongly impact the fundamental ability of an organism to move in novel landscapes, but innate behaviors can regulate choices that result in the realized movements expressed. By assessing the integrative role of morphology and behavior, we can improve our understanding of juvenile movement, particularly in understudied organisms like amphibians. We assessed the roles of morphological (snout‐vent length and relative leg length) and performance (maximal jump distance) traits in shaping the free movement paths, measured through fluorescent powder tracking, in three anuran species, Pacific treefrog (Hyliola regilla), Western toad (Anaxyrus boreas), and Cascades frog (Rana cascadae). We standardized the measurement of these traits to compare the relative role of species' innate differences versus physical traits in shaping movement. Innate differences, captured by species identity, were the most significant factor influencing movement paths via total movement distance and path sinuosity. Relative leg length was an important contributor but significantly interacted with species identity. Maximal jump performance, which was significantly predicted by morphological traits, was not an important factor in movement behavior relative to species identity. The importance of species identity and associated behavioral differences in realized movement provide evidence for inherent species differences being central to the dispersal and movement of these species. This behavior may stem from niche partitioning of these sympatric species, yet it also calls into question assumptions generalizing anuran movement behavior. These species‐level effects are important in framing differences as past research is applied in management planning.  相似文献   

9.
Substrate choice, swimming activity and risk to predation by burbot (Lota lota) of the well established Gammarus roeselii and the invader Dikerogammarus villosus were studied in mixed and single-species aquarium experiments. We used stones, gravel and aquatic weeds (Elodea, Chara) as substrates. We hypothesized that both species have different substrate preferences and that substrate affects the predation risk. We also assumed that presence of D. villosus influences substrate preference and predation risk of G. roeselii since the invader is known to affect the behavior of other gammarids. Adults of D. villosus in single species experiments and juveniles in mixed and single species experiments were evenly distributed over the different substrates but adults in mixed species experiments were more likely to prefer stone substrate. In contrast, adults and juveniles of G. roeselii clearly preferred aquatic weeds independent of the presence/absence of the invader. Both species preferred substrates with fissured surface over substrates with smooth surface. Gammarus roeselii was observed swimming more often than D. villosus in the open water but its swimming activity was lower when its preferred substrate was present compared with its swimming activity if non-preferred substrates were present. Predation rate of burbot on D. villosus was comparatively low and independent of the substrate. Burbot consumed many more G. roeselii than D. villosus, both in mixed and single species experiments. But when the preferred substrate of G. roeselii (weeds) was used in the experiments, predation rate of burbot on G. roeselii was somewhat lower than that when non-preferred substrates were present. The results of the experiments support our hypothesis that the gammarids studied here have different substrate preferences and that presence of the preferred substrate can affect predation risk. However, there is no evidence that presence of D. villosus affected substrate choice or predation risk in G. roeselii. We consider that differences in use of spatial niches permit co-existence of G. roeselii and D. villosus in the wild when substrates are diverse. The fact that G. roeselii than D. villosus is more often observed swimming in the open water may explain its higher risk of being captured by fish.  相似文献   

10.
Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non‐eradication‐oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.  相似文献   

11.
Dispersal and recruitment of fish in an intermittent stream network   总被引:1,自引:0,他引:1  
Animal movement is an important process connecting habitats in heterogeneous landscapes, and can play a key role in population persistence. Laboratory swim trials were conducted to determine and compare the dispersal capabilities of two native Australian fish, mountain galaxias (Galaxias olidus, Family Galaxiidae) and southern pygmy perch (Nannoperca australis, Family Nannopercidae) that maintain populations in hydrologically variable and intermittently flowing streams in south‐eastern Australia. These experiments showed that G. olidus had significantly greater swimming endurance under a range of flow velocities. Concurrent field surveys were used to establish whether swimming abilities observed in laboratory studies were consistent with patterns of inferred movement from distribution and abundance patterns observed in the field. Data collected at multiple sites from headwater to lowland reaches along multiple streams revealed substantial temporal changes in the distribution of young‐of‐year (0+) G. olidus, with spawning occurring at upland sites in winter, followed by downstream larval migration and subsequent upstream movement in late spring. Observed spatial and temporal patterns in G. olidus abundances were consistent with a source‐sink population structure, which may be disrupted by prolonged cease‐to‐flow periods during drought years. In contrast, results for N. australis suggested limited dispersal, with restricted local populations that persist at sites with permanent surface water. These field and laboratory findings complement our understanding of the spatial population structure of these two species in intermittent streams, and highlight the importance of understanding the role of dispersal in species conservation and habitat restoration.  相似文献   

12.
Dispersal can influence population dynamics, species distributions, and community assembly, but few studies have attempted to determine the factors that affect dispersal of insects in natural populations. Consequently, little is known about how proximate factors affect the dispersal behavior of individuals or populations, or how an organism’s behavior may change in light of such factors. Adult predaceous diving beetles are active dispersers and are important predators in isolated aquatic habitats. We conducted interrelated studies to determine how several factors affected dispersal in two common pond-inhabiting species in southern Alberta, Canada: Graphoderus occidentalis and Rhantus sericans. Specifically, we (1) experimentally tested the effect of plant and beetle densities on dispersal probabilities in ponds; (2) surveyed ponds and determined the relationships among beetle densities and plant densities and water depth; and (3) conducted laboratory trials to determine how beetle behavior changed in response to variation in plant densities, conspecific densities, food, and water depth. Our field experiment determined that both species exhibited density dependence, with higher beetle densities leading to higher dispersal probabilities. Low plant density also appeared to increase beetle dispersal. Consistent with our experimental results, densities of R. sericans in ponds were significantly related to plant density and varied also with water depth; G. occidentalis densities did not vary with either factor. In the laboratory, behavior varied with plant density only for R. sericans, which swam at low density but were sedentary at high density. Both species responded to depth, with high beetle densities eliciting beetles to spend more time in deeper water. The presence of food caused opposite responses for G. occidentalis between experiments. Behavioral changes in response to patch-level heterogeneity likely influence dispersal in natural populations and are expected to be important for observed patterns of individuals in nature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Animal movement varies from undirected dispersal to directed migration. Movement rates may have implications for conservation and resource management, as well as pest control, and they play a key role in invasion success. In slugs, long-distance dispersal is typically passive, whereas active movement is critical for local dispersal and determines access to resources such as food and shelter. Telemetry has recently been used to study individual slug movements in the wild, whereas movement in arena tests has explored mechanisms of interspecific competition and invasiveness in slugs. Studies that relate the performance of individual slugs in arena tests to their post-release behavior in nature are lacking. We measured individual short-term movement speed of commonly occurring native and non-native slugs of the genera Arion and Limax in arena tests and tracked their post-release dispersal movements in a garden by PIT telemetry. We demonstrate clear differences in movement behavior among the species, but non-native slugs did not display higher movement rates than their native congeners. In the arena test, slugs of the genus Limax displayed a higher short-term speed than slugs of the genus Arion, whereas in the field, individuals of Limax maximus showed lower dispersal rates compared to the other slug species. Moreover, there was a positive correlation between short-term speed in the arena test and movement in the field among individuals of L. cinereoniger, indicating the possible existence of behavioral syndromes in slugs, which may link movement ecology, animal personality, and the invasion ecology of pest species.  相似文献   

14.
Many organisms occupy heterogeneous landscapes that contain both barriers to movement as well as corridors that facilitate dispersal. The extent to which such features determine population connectivity will depend on the mechanisms utilized by organisms to disperse. Here we examined the interaction between landscape structure and dispersal in the endemic aquatic snail, Fonscochlea accepta , in the fragmented artesian spring ecosystem of arid central Australia. We used frequentist and Bayesian analyses of microsatellite data to identify population structure and immigration for 1130 snails sampled from 50 springs across an entire spring complex. We introduce a modified isolation-by-distance analysis to test hypotheses about how populations are clustered and to distinguish the most likely dispersal pathways within and between those clusters. Highly significant differences in F ST values and significant isolation-by-distance patterns were detected among springs across the entire complex, while Bayesian assignment tests revealed the presence of two hierarchical levels of spring clustering. Clusters were defined by the spatial aggregation of springs, dynamic aquatic habitat connections between springs and the ecology of the snails. Bayesian immigrant identification and our modified isolation-by-distance analysis revealed that dispersal occurs at two geographical scales via two very different mechanisms. Short range dispersal (usually ≤ 300 m) occurs via active movement facilitated by aquatic connections among springs while long-range dispersal (≥ 3 km) is likely facilitated by an animal vector (phoresy). These results underline the importance of both dispersal mode and landscape structure in influencing connectivity rates and patterns among populations.  相似文献   

15.
Long distance dispersal (LDD) of propagules is an important determinant of population dynamics, community structuring and biodiversity distribution at landscape, and sometimes continental, scale. Although migratory animals are potential LDD vectors, migratory movement data have never been integrated in estimates of propagule dispersal distances and LDD probability. Here we integrated migratory movement data of two waterbird species (mallard and teal) over two continents (Europe and North America) and gut retention time of different propagules to build a simple mechanistic model of passive dispersal of aquatic plants and zooplankton. Distance and frequency of migratory movements differed both between waterbird species and continents, which in turn resulted in changes in the shapes of propagule dispersal curves. Dispersal distances and the frequency of LDD events (generated by migratory movements) were mainly determined by the disperser species and, to a lesser extent, by the continent. The gut retention time of propagules also exerted a significant effect, which was mediated by the propagule characteristics (e.g. seeds were dispersed farther than Artemia cysts). All estimated dispersal curves were skewed towards local‐scale dispersal and, although dispersal distances were lower than previous estimates based only on the vector flight speed, had fat tails produced by LDD events that ranged from 230 to 1209 km. Our results suggest that propagule dispersal curves are determined by the migratory strategy of the disperser species, the region (or flyway) through which the disperser population moves, and the propagule characteristics. Waterbirds in particular may frequently link wetlands separated by hundreds of kilometres, contributing to the maintenance of biodiversity and, given the large geographic scale of the dispersal events, to the readjustment of species distributions in the face of climate change.  相似文献   

16.
Plant populations in fragmented ecosystems rely largely on internal dispersal by animals. To unravel the mechanisms underlying this mode of dispersal, an increasing number of experimental feeding studies is carried out. However, while physical activity is known to affect vertebrate digestive processes, almost all current knowledge on mechanisms of internal seed dispersal has been obtained from experiments with resting animals. We investigated how physical activity of the mallard Anas platyrhynchos, probably the quantitatively most important biotic dispersal agent in aquatic habitats in the entire Northern Hemisphere, affects gut passage survival and retention time of ingested plant seeds. We fed seeds of nine common wetland plants to mallards trained to subsequently swim for six hours in a flume tank at different swimming speeds (activity levels). We compared gut passage survival and retention times of seeds against a control treatment with mallards resting in a conventional dry cage. Intact gut passage of seeds increased significantly with mallard activity (up to 80% in the fastest swimming treatment compared to the control), identifying reduced digestive efficiency due to increased metabolic rates as a mechanism enhancing the dispersal potential of ingested seeds. Gut passage speed was modestly accelerated (13% on average) by increased mallard activity, an effect partly obscured by the interaction between seed retention time and probability of digestion. Gut passage acceleration will be more pronounced in digestion‐resilient seed species, thereby modulating their dispersal distances. Our findings imply that seed dispersal potential by mallards calculated from previous experiments with resting birds is highly underestimated, while dispersal distances may be overestimated for some plant species. Similar effects of physical activity on digestive efficiency of mammals suggests that endozoochorous dispersal of plant seeds by vertebrates is more effective and plays a quantitatively more important ecological role in both terrestrial and aquatic ecosystems than previously thought.  相似文献   

17.
Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems.  相似文献   

18.
Insect skins (exuviae) are of extracellular origin and shed during moulting. The skins do not contain cells or DNA themselves, but epithelial cells and other cell‐based structures might accidentally attach as they are shed. This source of trace DNA can be sufficient for PCR amplification and sequencing of target genes and aid in species identification through DNA barcoding or association of unknown life stages. Species identification is essential for biomonitoring programs, as species vary in sensitivities to environmental factors. However, it requires a DNA isolation protocol that optimizes the output of target DNA. Here, we compare the relative effectiveness of five different DNA extraction protocols and direct PCR in isolation of DNA from chironomid pupal exuviae. Chironomidae (Diptera) is a species‐rich group of aquatic macroinvertebrates widely distributed in freshwater environments and considered a valuable bioindicator of water quality. Genomic DNA was extracted from 61.2% of 570 sampled pupal exuviae. There were significant differences in the methods with regard to cost, handling time, DNA quantity, PCR success, sequence success and the ability to sequence target taxa. The NucleoSpin® Tissue XS Kit, DNeasy® Blood and Tissue kit, and QuickExtract? DNA Extraction Solution provided the best results in isolating DNA from single pupal exuviae. Direct PCR and DTAB/CTAB methods gave poor results. While the observed differences in DNA isolation methods on trace DNA will be relevant to research that focuses on aquatic macroinvertebrate ecology, taxonomy and systematics, they should also be of interest for studies using environmental barcoding and metabarcoding of aquatic environments.  相似文献   

19.
1. Studies of dispersal of macroinvertebrates in streams and rivers tend to be focused on drift, whilst benthic movements are usually considered to be less important.
2. Field-enclosure experiments with the mayfly Baetis rhodani indicate that net dispersal in this species is simply a proportional loss of individuals from the benthos.
3. Neither net upstream or downstream movements exhibited evidence of density-dependence in the form of curvilinear relationships between initial and final densities.
4. The net number of animals moving upstream did not differ significantly from the net number moving downstream.
5. The probable mechanisms behind density-independent dispersal are discussed, as are the implications for our understanding of population dynamics in relation to invertebrate drift.  相似文献   

20.
Dispersal is a central aspect of the ecology, evolution, and conservation of species. Predicting how species will respond to changing environmental conditions requires understanding factors that produce variation in dispersal. We explore one source of variation, differences between sexes within a spatial population network. Here, we compare the dispersal patterns of male and female Parnassius smintheus among 18 subpopulations over 8 years using the Virtual Migration Model. Estimated dispersal parameters differed between males and females, particularly with respect to movement through meadow and forest matrix habitat. The estimated dispersal distances of males through forest were much less than for females. Observations of female movement showed that, unlike males, females do not avoid forest nor does forest exert an edge effect. We explored whether further forest encroachment in this system would have different effects for males and females by fitting mean parameter estimates to the landscape configuration seen in 1993 and 2012. Despite differences in their dispersal due presumably to both habitat and physiological differences, males and females are predicted to respond in similar ways to reduced meadow area and increased forest isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号