首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aims Nighttime sap flow of trees may indicate transpiration and/or recharge of stem water storage at night. This paper deals with the water use of Acacia mangium at night in the hilly lands of subtropical South China. Our primary goal was to reveal and understand the nature of nighttime sap flow and its functional significance.Methods Granier's thermal dissipation method was used to determine the nighttime sap flux of A. mangium. Gas exchange system was used to estimate nighttime leaf transpiration and stomatal conductance of studied trees.Important findings Nighttime sap flow was substantial and showed seasonal variation similar to the patterns of daytime sap flow in A. mangium. Mean nighttime sap flow was higher in the less precipitation year of 2004 (1122.4 mm) than in the more precipitation year of 2005 (1342.5 mm) since more daytime transpiration and low soil water availability in the relatively dry 2004 can be the cause of more nighttime sap flow. Although vapor pressure deficit and air temperature were significantly correlated with nighttime sap flow, they could only explain a small fraction of the variance in nighttime sap flow. The total accumulated water loss (E L) by transpiration of canopy leaves was only ~2.6–8.5% of the total nighttime sap flow (E t) during the nights of July 17–18 and 18–19, 2006. Therefore, it is likely that the nighttime sap flow was mainly used for refilling water in the trunk. The stem diameter at breast height, basal area and sapwood area explained much more variance of nighttime water recharge than environmental factors and other tree form features, such as tree height, stem length below the branch, and canopy size. The contribution of nighttime water recharge to the total transpiration ranged from 14.7 to 30.3% depending on different DBH class and was considerably higher in the dry season compared to the wet season.  相似文献   

2.
植物夜间液流的发生、生理意义及影响因素研究进展   总被引:3,自引:0,他引:3  
方伟伟  吕楠  傅伯杰 《生态学报》2018,38(21):7521-7529
植物夜间液流是指在夜间通过植物根、茎、叶的液流量。通过对不同物种、生境条件和生态系统的野外观测,发现植物普遍存在夜间液流现象。阐述了夜间液流的大小和组成,并从夜间液流的生理意义、影响因素以及生态水文效应方面对已有的研究进展进行了综述和分析。夜间液流占到全天液流量的比例一般为5%—20%。夜间液流包括夜间的茎干补水和夜间的蒸腾作用两个过程,但是目前没有确切的研究或技术将两个过程区分开来。虽然总体上夜间液流占全天液流量的比例较少,但是夜间液流的储水作用和蒸腾作用对植物生长有重要的生理意义:夜间储水作用提高了夜间茎干水势,减少了木质部栓塞化的形成,加强了植物对干旱环境的适应;而蒸腾作用在营养物质和氧气的运输,以及水力提升等方面有重要的作用。影响夜间液流的因素较多,气象因素是主要的环境驱动因子,而土壤水分对夜间液流的影响与生境有关;夜间液流还受到物种和生境条件的影响。由于夜间液流的发生,对不同尺度的生态水文过程产生了影响。未来的研究可进一步探索在全球气候变化条件下,夜间液流与植物生理过程的关系,定量评估夜间液流对生态水文过程的影响,深入研究夜间液流对环境变化的响应。  相似文献   

3.
Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree‐based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions.  相似文献   

4.
Low leaf hydraulic conductance associated with drought tolerance in soybean   总被引:3,自引:0,他引:3  
Lack of water is the most serious environmental constraint on agricultural production. More efficient use of water resources is a key solution for increased plant productivity in water-deficit environments. We examined the hydraulic characteristics of a 'slow wilting' phenotype in soybean ( Glycine max Merr.), PI 416937, which has been shown to have relatively constant transpiration rates above a threshold atmospheric vapor pressure deficit (VPD). The VPD response of PI 416937 was confirmed. Three experiments are reported to examine the hypothesis that the VPD response was a result of low hydraulic conductance in leaves as compared to two other soybean genotypes. Results are reported from experiments to measure transpiration response to VPD when xylem water potential was maintained at zero, leaf rehydration response and leaf carbon assimilation response to petiole cutting. Major interspecific differences in leaf hydraulic properties were observed. The observed low leaf hydraulic conductance in PI 416937 is consistent with an increased water use efficiency, and an increased water conservation by limiting transpiration rates under high evaporative conditions but allowing normal gas exchange rates under more moderate evaporative conditions.  相似文献   

5.
To better understand the patterns and regulation of nighttime community respiration, dissolved oxygen (DO) and pH were simultaneously measured at 5-min intervals for 37 days in each of three outdoor mesocosms with different fish stocking levels. Nighttime decreases in community respiration rates were estimated fairly well by an exponential function of time and slightly worse by a linear one, irrespective of ecosystem differences, but smaller time coefficients were obtained for dissolved inorganic carbon (DIC) than for DO. Respiratory quotients increased significantly from nightfall to the hour before dawn. To roughly estimate gross productivity from net productivity measurements, we extrapolated nighttime respiration from various parts of the night to the daytime; among the models evaluated, that extrapolating the respiration rate averaged over the whole nighttime to the previous day led to the highest correlation between irradiance and estimated gross productivity. Significant correlations were found between estimated daytime gross production rates and respiration rates just after sunset, whereas respiration before sunrise seemed quite constant and close to minimum metabolic rates of the ecosystems. Nighttime respiration was also affected by the composition and/or metabolic state of the system, expressed here by daily net community productivity. Multiple regression analysis showed that more than 75% of daily and between-pond variation in respiration rates just after sunset was explained by daytime gross productivity, planktonic and detrital carbon concentrations, and daily net community productivity. Received: July 5, 1999 / Accepted: November 17, 1999  相似文献   

6.
北京山区元宝枫夜间液流活动特征及影响因素   总被引:3,自引:0,他引:3  
树木夜间会维持部分气孔开放,从而能够在一定环境驱动因子的情况下进行夜间蒸腾。夜间液流作为储存水的重要来源,能够补充植物白天的水分亏缺,使其恢复水分储备,对植物生长发育有重要意义。采用TDP热探针法测定了位于八达岭林场的元宝枫树干液流密度,同步监测了主要环境因子,以深入揭示树木夜间蒸腾耗水规律和植被应对环境胁迫的调控机制,为山区植被建设、森林健康经营和挑选节水树种提供理论依据。结果表明:以0:00为界区分前半夜和后半夜,元宝枫夜间液流速率前半夜较后半夜活跃,且前半夜夜间累积液流量占夜间累积液流量的53.85%—64.10%,而后半夜夜间累积液流量占夜间累积液流量的35.9%—46.15%。5月的夜间累积液流量最大,平均夜间液流通量为5月6月8月9月7月。存在水分胁迫的条件下降雨之后夜间液流会增大,而当土壤水分条件较好,土壤水分不再是夜间液流的限制因子时,夜间液流通量并不高。不同树木形态的夜间液流通量有显著差异,在一定范围内,胸径树高冠幅越大的样木,夜间液流通量越大。用于夜间蒸腾的夜间液流通量与饱和水汽压差、温度、空气相对湿度、风速相关,其中夜间蒸腾存在于前半夜,表现为前半夜夜间液流通量与环境因子的相关性相较后半夜相关性较为显著,后半夜则以补水为主,补水量取决于土壤含水量和日蒸腾强度。存在干旱胁迫的条件下,夜间液流既用于夜间蒸腾,又有一部分用来补水;而土壤水分条件好时夜间液流则主要用于补水,此时夜间树干液流与环境因子相关性不高。元宝枫夜间液流通量的日蒸腾贡献率5、6月份大于7、8月份,即干季比湿季贡献率更高。夜间液流通量的日蒸腾贡献率与白天总蒸腾量相关性较高,并与累积太阳辐射成负相关。  相似文献   

7.
Night-time leaf conductance ( g night) and transpiration may have several adaptive benefits related to plant water, nutrient and carbon relations. Little is known, however, about genetic variation in g night and whether this variation correlates with other gas exchange traits related to water use and/or native habitat climate. We investigated g night in 12 natural accessions and three near isogenic lines (NILs) of Arabidopsis thaliana . Genetic variation in g night was found for the natural accessions, and g night was negatively correlated with native habitat atmospheric vapour pressure deficit (VPDair), suggesting lower g night may be favoured by natural selection in drier habitats. However, there were also significant genetic correlations of g night with daytime gas exchange traits expected to affect plant fitness [i.e. daytime leaf conductance, photosynthesis and intrinsic water-use efficiency (WUEi)], indicating that selection on daytime gas exchange traits may result in indirect selection on g night. The comparison of three NILs to their parental genotypes identified one quantitative trait locus (QTL) contributing to variation in g night. Further characterization of genetic variation in g night within and among populations and species, and of associations with other traits and native habitats will be needed to understand g night as a putatively adaptive trait.  相似文献   

8.
There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water‐limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought‐sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co‐mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well‐watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non‐stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water‐use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology‐informed marker‐assisted selection.  相似文献   

9.
Aims Climate change largely impacts ecosystem carbon and water cycles by changing plant gas exchange, which may further cause positive or negative feedback to global climate change. However, long-term global change manipulative experiments are seldom conducted to reveal plant ecophysiological responses to climatic warming and altered precipitation regimes.Methods An 8-year field experiment with both warming and increased precipitation was conducted in a temperate grassland in northern China. We measured leaf gas exchange rates (including plant photosynthesis, transpiration and instantaneous water use efficiency [WUE]) of two dominant plant species (Stipa sareptana var. krylovii and Agropyron cristatum) from 2005 to 2012 (except 2006 and 2010) and those of other six species from 2011 to 2012.Important findings Increased precipitation significantly stimulated plant photosynthetic rates (A) by 29.5% and 19.9% and transpiration rates (E) by 42.2% and 51.2% for both dominant species S. sareptana var. krylovii and A. cristatum, respectively, across the 8 years. Similarly, A and E of the six plant functional types were all stimulated by increased precipitation in 2011 and 2012. As the balance of A and E, the instantaneous WUEs of different plant species had species-specific responses to increased precipitation. In contrast, neither warming nor its interaction with increased precipitation significantly affected plant leaf gas exchange rates. Furthermore, A and E of the two dominant species and their response magnitudes to water treatments positively correlated with rainfall amount in July across years. We did not find any significant difference between the short-term versus long-term responses of plant photosynthesis, suggesting the flexibility of leaf gas exchange under climate change. The results suggest that changing precipitation rather than global warming plays a prominent role in determining production of this grassland in the context of climate change.  相似文献   

10.
Daytime warming and nighttime warming have the potential to influence plant community structure and ecosystem functions. However, their impacts on ecological stability remain largely unexplored. We conducted an eight‐year field experiment to compare the effects of daytime and nighttime warming on the temporal stability of a temperate steppe in northern China. Our results showed that the cover and stability of dominant species, stability of subordinate species, and compensatory dynamics among species strongly influenced community‐level stability. However, daytime, but not nighttime, warming significantly reduced community temporal stability mainly through the reduction in the abundance of dominant, stable species. These findings demonstrate the differential effects of daytime and nighttime warming on community stability and emphasize the importance of understanding the changes of dominant species for accurately predicting community dynamics under climate warming.  相似文献   

11.
Synthesis This study compared the decomposability of leaf, twig and wood litter from 27 co‐occurring temperate rainforest tree species in New Zealand. We found that interspecific variation in decomposition was not coordinated across the three litter types. Analysis of the relationships between functional traits and decomposition revealed that traits predictive of wood decomposition varied among the species independently from traits predictive of the decomposition of leaf and twig litter. We conclude that efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider the functional traits of multiple plant structures. Plant functional traits are increasingly used to evaluate changes in ecological and ecosystem processes. However our understanding of how functional traits coordinate across different plant structures, and the implications for trait‐driven processes such as litter decomposition, remains limited. We compared the functional traits of green leaves and leaf, twig and wood litter among 27 co‐occurring tree species from New Zealand, and quantified the loss of mass, N and P from the three litter types during decomposition. We hypothesised that: a) the functional traits of green leaves, and leaf, twig and wood litter are co‐ordinated so that species which produce high quality leaves and leaf litter will also produce high quality twig and wood litter, and b) the decomposability of leaf, twig and wood litter is coordinated because breakdown of all three litter types is driven by similar combinations of traits. Trait variation across species was co‐ordinated between leaves, twigs and wood when angiosperm and gymnosperm species were considered in combination, or when angiosperms were considered separately, but trait coordination was poor for gymnosperms. There was little coordination among the three litter types in their decomposability, especially when angiosperms and gymnosperms were considered separately; this was caused by the decomposability of each of the three litter types, at least partially, being driven by different functional traits or trait combinations. Our findings indicate that although interspecific variation in the functional traits of trees can be coordinated among leaves, twigs and wood, different or unrelated traits predict the decomposition of these different structures. Furthermore, leaf‐level analyses of functional traits are not satisfactory proxies for function of whole trees and related ecological processes. As such, efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider functional traits of other plant structures.  相似文献   

12.
L. Donovan  M. Linton  J. Richards 《Oecologia》2001,129(3):328-335
Predawn leaf water potential (Ow) and xylem pressure potential (Op) are expected to be in equilibrium with the soil water potential (soil Ow) around roots of well-watered plants. We surveyed 21 plant species (desert, chaparral, and coastal salt marsh species, as well as two temperate tree and two crop species) for departures from this expectation and for two potential mechanisms explaining the departures. We measured soil Ow, leaf Ow, and xylem Op in the glasshouse under well-watered conditions that eliminated soil moisture heterogeneity and ensured good soil-root hydraulic continuity. Most species failed to equilibrate fully with soil Ow, depending on whether leaf Ow or xylem Op was used as the measure of predawn plant water potential. The contribution of nighttime transpiration to predawn disequilibrium was assessed by comparing plants with bagged canopies (enclosed overnight in plastic bags to eliminate transpiration) to plants with unbagged canopies. Nighttime transpiration significantly reduced predawn xylem Op for 16 of 21 species and the magnitude of this contribution to predawn disequilibrium was large (0.50-0.87 MPa) in four woody species: Atriplex confertifolia, Batis maritima, Larrea tridentata, and Sarcobatus vermiculatus. The contribution of nighttime transpiration to predawn disequilibrium was not more prevalent in mesic compared with xeric or desert phreatophytic compared with non-phreatophytic species. Even with bagging that eliminated nighttime transpiration, plants did not necessarily equilibrate with soil Ow. Plant xylem Op or leaf Ow were significantly more negative than soil Ow for 15 of 15 species where soil Ow was measured. Predawn disequilibrium based on leaf Ow was of large magnitude (0.50-2.34 MPa) for seven of those 15 species, predominately halophytes and Larrea tridentata. A portion of the discrepancy between leaf and soil Ow is consistent with the putative mechanism of high concentrations of leaf apoplastic solutes as previously modeled for a halophyte, but an additional portion remains unexplained. Predawn leaf Ow and xylem Op may not reflect soil Ow, particularly for woody plants and halophytes, even under well-watered conditions.  相似文献   

13.
Livestock grazing represents an important human disturbance for vegetation worldwide. We analysed the intraspecific differences in mean trait values between different grazing regimes (ungrazed and grazed) and explored whether these differences are consistent across species in a sub‐humid mountain ecosystem in Central Argentina. We selected 14 species of eight different families, co‐occurring in both regimes and comprising herbaceous (grasses and forbs) and woody (shrubs and trees) plants. For each species and grazing regime we measured 12 traits related to plant size, carbon fixation and water use. We found that plants in the grazed regime had consistently smaller leaves and shorter stature and internodal length than plants of the same species under the ungrazed regime. For the remaining traits the responses were species‐specific. Dry matter content, leaf tensile strength and minimum leaf water potential (Ψleaf) showed contrasting responses to grazing. Specific leaf area, wood density and potential water content of wood showed almost no significant responses except for very few species. Neither leaf area per shoot mass nor leaf area per sapwood area differed significantly between grazing regimes. Our study suggested that the intraspecific variation found for the size‐related traits would allow species to respond to grazing without modifying markedly other structural traits, a plastic response that might increase the probability of species success.  相似文献   

14.
高温天气植被蒸腾与遮荫降温效应的变化特征   总被引:2,自引:0,他引:2  
开展城市中不同树种植被遮荫与蒸腾降温效应的量化研究是科学优化植被温度调控服务的重要基础。以南京市栖霞区某小型绿地单元为研究区,对高温晴朗天气下不同树种典型植株树干液流进行了观测,采用"单位叶面积上的平均液流速率×叶面积指数"的扩展方法实现了由单株到林分尺度上冠层蒸腾量与蒸腾降温效应的估算,并根据林上、林下太阳辐射值计算了不同树种与整个绿地单元的遮荫降温效应,进而阐明了蒸腾与遮荫降温对总降温效应贡献率的变化特征。研究结果表明:1)3个树种树干液流均呈现昼高夜低的变化趋势,树干液流通常在6:00左右启动,正午前后达到峰值,且存在明显的"午休"现象,而在同一树种内树干液流会随着胸径的增大而显著增大;2)林分尺度上的冠层蒸腾量与蒸腾降温效应均为杨树雪松香樟,杨树峰或谷出现的时间(11:00—19:00)均明显晚于雪松(10:00—15:00)和香樟(9:00—16:00);3)3个树种遮荫降温效应总体上与太阳辐射的日变化规律基本一致,但树种间日平均降温效应的差异较小;4)3个树种与整个小型绿地单元的总降温效应在夜间均非常微弱,且全部为蒸腾降温,而在白天遮荫对总降温的贡献率(60%—75%)则明显高于蒸腾降温(25%—40%)。  相似文献   

15.
Diurnal changes of leaf water potential and stomatal conductance were measured for 12 deciduous shrubs and tree saplings in the understorey of a temperate forest. Sunflecks raised the leaf temperature by 4°C, and vapor pressure deficit to 2 kPa. Although the duration of the sunflecks was only 17% of daytime, the photon flux density (PFD) of sunflecks was 52% of total PFD on a sunny summer day. Leaf osmotic potential at full turgor decreased in summer, except in some species that have low osmotic potential in the spring. Plants that endured low leaf water potential had rigid cell walls and low osmotic potential at full turgor. These plants did not have lower relative water content and turgor potential than plants with higher leaf water potential. There were three different responses to an increase in transpiration rate: (i) plants had low leaf water potential and slightly increased soil-to-leaf hydraulic conductance; (ii) plants decreased leaf water potential and increased the hydraulic conductance; and (iii) plants had high leaf water potential and largely increased the hydraulic conductance.  相似文献   

16.
In the evergreen shrubland vegetation of Mexico (mexical), most of the species are sclerophyllous woody plants with steep leaf angles. This architectural pattern has been interpreted as a strategy to cope with water shortages and high radiation. However, the current association between evergreenness and steep leaf angles across mexical plant species could be the result of an adaptive association achieved through correlated evolutionary change between both traits or, alternatively, may be the result of common evolutionary ancestry. In this study, we quantified leaf angle in 28 dominant species under a phylogenetic framework and evaluated the functional implications of the observed range of leaf angles in terms of leaf temperature, water potentials and transpiration by combining manipulative experiments restraining leaves horizontally with microclimatic and stomatal conductance measurements in selected species and energy balance calculations. Horizontally restrained leaves exhibited reduced water potentials and stomatal conductances, and significantly increased temperatures and transpiration rates. Steeply inclined leaves operated near air temperatures and could sustain relatively high stomatal conductances during the dry season since they were associated with low transpiration rates. Phylogenetic analyses showed that steep leaf angles evolved in a correlated fashion in evergreen species. The functional consequences of leaf angle together with the phylogenetic analysis indicate the adaptive nature of this trait which allows the evergreen species to cope with arid conditions and therefore to persist within the mexical community.  相似文献   

17.
Stable oxygen isotope ratios (delta18O) have become a valuable tool in the plant and ecosystem sciences. The interpretation of delta18O values in plant material is, however, still complicated owing to the complex interactions among factors that influence leaf water enrichment. This study investigated the interplay among environmental parameters, leaf physiological properties and leaf water relations as drivers of the isotopic enrichment of leaf water across 17 Eucalyptus species growing in a common garden. We observed large differences in maximum daily leaf water delta18O across the 17 species. By fitting different leaf water models to these empirical data, we determined that differences in leaf water delta18O across species are largely explained by variation in the Péclet effect across species. Our analyses also revealed that species-specific differences in transpiration do not explain the observed differences in delta18O while the unconstrained fitting parameter 'effective path length' (L) was highly correlated with delta18O. None of the leaf morphological or leaf water related parameters we quantified in this study correlated with the L values we determined even though L was typically interpreted as a leaf morphological/anatomical property. A sensitivity analysis supported the importance of L for explaining the variability in leaf water delta18O across different species. Our investigation highlighted the importance of future studies to quantify the leaf properties that influence L. Obtaining such information will significantly improve our understanding of what ultimately determines the delta18O values of leaf water across different plant species.  相似文献   

18.
The response of leaf water potential to change in transpirationrate was examined in young soybean and cotton plants. Leaf waterpotential measured 1 h after transpiration became constant followinga change in humidity and was constant over a wide range of transpirationrates in both species. However, leaf water potential was notin equilibrium with flow until 3 h after transpiration becameconstant. At equilibrium an increase in transpiration alwaysresulted in a decrease in leaf water potential. It was alsofound that different responses of equilbrium leaf water potentialto transpiration rate occurred depending on whether transpirationwas altered by changing humidity, light intensity, or leaf area.Low light and decreased leaf area caused lower leaf water potentialsfor a given transpiration rate. These increases in root resistancecorrelated with lower rates of root elongation. The data indicatethat shoot-root interactions are occurring which affect apparentroot resistance to water flow, and complicate interpretationof whole plant data on leaf water potential and transpirationin terms of the flow dependence of root hydraulic characteristics.  相似文献   

19.
Investigations of how species compositional changes interact with other aspects of global change, such as nutrient mobilization, to affect ecosystem processes are currently lacking. Many studies have shown that mixed species plant litters exhibit non‐additive effects on ecosystem functions in terrestrial and aquatic systems. Using a full‐factorial design of three leaf litter species with distinct initial chemistries (carbon:nitrogen; C:N) and breakdown rates (Liriodendron tulipifera, Acer rubrum and Rhododendron maximum), we tested for additive and non‐additive effects of litter species mixing on breakdown in southeastern US streams with and without added nutrients (N and phosphorus). We found a non‐additive (antagonistic) effect of litter mixing on breakdown rates under reference conditions but not when nutrient levels were elevated. Differential responses among single‐species litters to nutrient enrichment contributed to this result. Antagonistic litter mixing effects on breakdown were consistent with trends in litter C:N, which were higher for mixtures than for single species, suggesting lower microbial colonization on mixtures. Nutrient enrichment lowered C:N and had the greatest effect on the lowest‐ (R. maximum) and the least effect on the highest‐quality litter species (L. tulipifera), resulting in lower interspecific variation in C:N. Detritivore abundance was correlated with litter C:N in the reference stream, potentially contributing to variation in breakdown rates. In the nutrient‐enriched stream, detritivore abundance was higher for all litter and was unrelated to C:N. Thus, non‐additive effects of litter mixing were suppressed by elevated streamwater nutrients, which increased nutrient content of all litter, reduced variation in C:N among litter species and increased detritivore abundance. Nutrients reduced interspecific variation among plant litters, the base of important food web pathways in aquatic ecosystems, affecting predicted mixed‐species breakdown rates. More generally, world‐wide mobilization of nutrients may similarly modify other effects of biodiversity on ecosystem processes.  相似文献   

20.
Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10‐day period and assessed whether and why patterns may vary among species. We found large leaf‐to‐air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf‐to‐air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade‐off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号