首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollination service in agricultural crops increases significantly with pollinator diversity and wild pollinator abundance. Differences in the foraging behaviour of pollinating insects are one of the reasons why pollinator diversity and abundance enhances crop pollination. Here, we focused on the foraging behaviour of honey bees and bumble bees in sweet cherry orchards. In addition, we studied the influence of bee diversity and abundance on the foraging behaviour of honey bees and bumble bees. Honey bees were found to visit fewer flowers than bumble bees. Bumble bees also showed a higher probability of changing trees between rows than honey bees. Both visitation rate and probability of row changes of honey bees increased with bumble bee diversity and with bumble bee abundance. We also found that the probability of row changes of honey bees increased with increasing bumble bee abundance. These effects of bumble bee richness and abundance on the pollination behaviour of honey bees can improve the pollination performance of honey bees in crops that depend on cross pollination. Our results highlight the higher pollination performance of bumble bees and the facilitative effect of wild pollinators to crop pollination.  相似文献   

2.
Reports of world-wide decline of pollinators, and of bees in particular, raise increasing concerns about maintenance of pollination interactions. While local factors of bee decline are relatively well known and potential mitigation strategies at the landscape scale have been outlined, the regional and continental-scale threats to bee diversity have only been marginally explored. Here we document large-scale spatial patterns for a representative bee subfamily, the determinants of its species richness, and assess major threats to these pollinators. Using a comprehensive global dataset of Colletinae (genera Colletes, also called “polyester” or “cellophane” bees for their underground nests lined with a polyester secretion, and Mourecotelles), a species-rich subfamily whose organismal and physiological ecology is representative of many bees, we measured species richness and endemism on global to continental scales. We explored the relationships between bee species richness and potential environmental stress factors grouped into three categories: contemporary climate, habitat heterogeneity, and anthropogenic pressure. Bees of the subfamily Colletinae demonstrate the reversed latitudinal gradient in species richness and endemism suggested for bees; the highest species richness of Colletinae was found between 30° and 50° latitude in both the northern and southern hemispheres. Centres of endemism largely overlapped with those of species richness. The importance of the Greater Cape Floristic Region, previously identified as a centre of richness and endemism of bees, was confirmed for Colletinae. On the global scale, present-day climate was a significant predictor of species richness as was flowering plant diversity represented by vascular plant species richness and centres of plant diversity. Our main conclusion is that climate change constitutes a potential threat to bee diversity, as does declining diversity of vascular plants. However, a significant overlap between centres of bee richness and plant diversity might increase chances for developing conservation strategies.  相似文献   

3.
The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.  相似文献   

4.
  • 1 Pollination is a key ecosystem service. Although bees are the most important pollinators, they are endangered by intensive agricultural practices. The present study investigated the effects of farmland management and environmental factors at local and landscape scales on bees in Central Hungary.
  • 2 Bees were sampled in winter cereal fields that varied in the amount of applied fertilizer and insecticide use. Measurements included total, small and large bee species richness and abundance; stability of total species richness and abundance (coefficient of variation, CV); the nitrogen content of fertilizers; the number of insecticide applications; within‐field location; species richness and abundance of insect‐pollinated plants; and the percentage of semi‐natural areas in a 500‐m radius circle around the fields under study.
  • 3 Increasing the amount of fertilizer decreased total and small bee abundance and increased the CV of total bee abundance. Insecticide use had a significant negative effect on total and small bee species richness and on large bee abundance. The percentage of semi‐natural habitats in a 500‐m radius did not influence bee species richness and abundance.
  • 4 The results obtained confirms that the intensification of farmland management poses a threat to bee diversity, and thus may reduce pollination services. Recently‐introduced agri‐environment schemes are one potential approach for managing agricultural land use: reduced amounts of fertilizer and a cessation of insecticide application might lead to high bee species richness and abundance and ensure the pollination of wild plants and flowering crops.
  相似文献   

5.
  1. Bees are prolific, vital pollinators in agricultural and natural settings, but some taxa are declining. Surveying bees is crucial to understand the needs of these taxa; however, we lack a fine-grained understanding of assemblages associated with different sampling methods that would enable us to analyse data range-wide.
  2. Here we examine the difference in abundance and richness of bees (bee bowls and vane traps only) and bumble bees (genus Bombus; bee bowls, blue vane traps and target netting) sampled with these methods from mixed-grass prairie to alpine habitats in Wyoming, USA.
  3. We collected four times more bees and twice as many genera of bees in vane traps than bee bowls. Vane traps captured more individuals of abundant genera than bee bowls.
  4. Bombus species abundance did not vary between vane traps and target netting; however, richness was higher in vane traps. Bee bowls captured few Bombus species.
  5. Overall, we recommend using vane traps to sample most bees, and a combination of vane traps and target netting to collect bumble bees. We evaluated how three sampling techniques perform when surveying for wild bees, which will aid in identifying declining species as well as monitoring species of conservation concern.
  相似文献   

6.
In recent years restoration project efforts in arid grasslands of the Pacific Northwest have increased; however, little is known about the bee communities in these areas or how restoration affects them. Native bees provide an essential ecosystem service through pollination of crops and native plants and understanding their response to restoration is a high priority. To address this issue, we conducted a three‐year study in an arid bunchgrass prairie with three objectives: (1) describe the bee community of this unique grassland type and its temporal variability; (2) investigate environmental variables influencing the community; and (3) examine effects of restoration on the community. We identified 62 bee species and found strong seasonal and inter‐annual variation in bee abundance, richness, diversity, and species composition. Unexpectedly, these temporal trends did not correspond with patterns in floral resources; however, several variables were associated with variation in bee abundance, richness, and diversity among sites. Sites with high levels of litter cover had more bees, while sites with taller vegetation or more blooming flowers had greater species richness but lower diversity. We found no detectable effect of restoration on bee abundance, richness, diversity, or composition. Species composition at native sites differed from those in actively and passively restored sites, which did not differ from each other. Restored sites also had fewer flowers and differing floral composition relative to native sites. These results suggest that if grassland restoration is to benefit bees, efforts should focus on both expanding floral resources and enhancing variables that influence nesting habitat.  相似文献   

7.
Habitat restoration to promote wild pollinator populations is becoming increasingly common in agricultural lands. Yet, little is known about how wild bees, globally the most important wild pollinators, use resources in restored habitats. We compared bee use of native and exotic plants in two types of restored native plant hedgerows: mature hedgerows (>10 years from establishment) designed for natural enemy enhancement and new hedgerows (≤2 years from establishment) designed to enhance bee populations. Bees were collected from flowers using timed aerial netting and flowering plant cover was estimated by species using cover classes. At mature hedgerow sites, wild bee abundance, richness, and diversity were greater on native plants than exotic plants. At new sites, where native plants were small and had limited floral display, abundance of bees was greater on native plants than exotic plants; but, controlling for floral cover, there was no difference in bee diversity and richness between the two plant types. At both mature and new hedgerows, wild bees preferred to forage from native plants than exotic plants. Honey bees, which were from managed colonies, also preferred native plants at mature hedgerow sites but exhibited no preference at new sites. Our study shows that wild bees, and managed bees in some cases, prefer to forage on native plants in hedgerows over co‐occurring weedy, exotic plants. Semi‐quantitative ranking identified which native plants were most preferred. Hedgerow restoration with native plants may help enhance wild bee abundance and diversity, and maintain honey bee health, in agricultural areas.  相似文献   

8.
The use of timber harvest residue as an energy source is thought to have environmental benefits relative to food‐based crops, yet the ecological impact of this practice remains largely unknown. We assessed whether the abundance and diversity of wild bees (Apoidea) were influenced by the removal of harvest residue and associated soil compaction within managed conifer forest in western Oregon, USA. We sampled bees over two years (2014–2015) on study plots that were subjected to five treatments representing gradients in removal of harvest residue and soil compaction. We collected >7,500 bee specimens from 92 distinct species/morphospecies that represented five of the seven bee families. We trapped 3x more individuals in the second year of the study despite identical sampling effort in both years, with most trapped bees classified as ground‐nesting species. Members of the sweat bee family (Halictidae) comprised more than half of all specimens, and the most abundant genus was composed of metallic green bees (Agapostemon, 33.6%), followed by long‐horned bees (Melissodes, 16.5%), sweat bees (Halictus, 15.9%), and bumble bees (Bombus, 13.6%). In both years, abundance and observed species richness were greatest in the most intensive harvest residue treatment, with other treatments having similar values for both measures. Our study indicates that early successional managed conifer forest that has experienced removal of harvest residue can harbor a surprising diversity of wild bees, which are likely to have important contributions to the broader ecological community through the pollination services they provide.  相似文献   

9.
Wildflower strips are a management practice increasingly used to provide floral resources to wild bees in agroecosystems. Yet, despite known spatiotemporal variation in wild bee communities, the degree to which different wildflower strip species consistently support wild bee communities is poorly understood. Additionally, whether such consistency is related to the functional roles wildflower species play (e.g., in supporting diverse, rare, or unique suites of bee species) has not been considered. Over three years and on four diversified farms, we evaluated spatiotemporal variation in wild bee communities and bee-flower interactions in wildflower strips to better understand the roles of flower strip species in supporting bees. We documented spatiotemporal variation in the abundance, richness, and composition of local wild bee communities. Certain wildflower species consistently supported the highest richness of wild bees across years. These wildflower species were regularly core members of the bee-flower interaction network, visited by both generalist and specialist bees. By contrast, wildflower species supporting the most unique suites of bees were variable in this role among farms. In order to select plant species for wildflower strips that consistently support a high diversity of wild bee communities within farm landscapes, it is useful to consider several different functional roles that plants may play. Whereas a handful of wildflower species may be visited by the majority of local wild bee species, achieving support for the remaining, and perhaps rarer, bee species will require planting additional flower species, which may appear redundant until the spatiotemporal variation in wild bee communities is more thoroughly considered. This functional approach to selecting wildflower species for bee conservation efforts is important for making practical recommendations to land managers and for guiding best management practices in different regions and with diverse management goals.  相似文献   

10.
Reliable and consistent monitoring is essential for bee conservation. Correctly interpreting the influence of habitat characteristics on native bee communities is necessary to develop effective strategies for bee conservation and to support the provision of pollination services to agricultural crops or natural plant communities. Biases imposed by different sampling methods used to monitor bee populations can affect our ability to discern important habitat characteristics, but the extent of this bias is not well understood. We used three common sampling methods (blue vane traps, colored pan traps, and aerial net collection) to assess bee communities in fragments of Palouse Prairie in eastern Washington and northern Idaho. We determined differences in abundance, species richness, proportional representation of different genera, and functional trait characteristics among the three sampling techniques. We also evaluated differences in the relationships between bee species richness and diversity and two key habitat variables known to mediate bee populations: local plant species richness and the amount of suitable bee habitat in the surrounding landscape. Community metrics for bees collected using blue vane traps were correlated with the amount of suitable habitat in the landscape but not with plant species richness. Conversely, community metrics for bees collected using an aerial net were correlated with the local plant species richness but not with the amount of suitable habitat. Our results indicate that effective conservation of insect communities will require a combination of sampling methods to reliably discern the influence of habitat variables at different scales and across taxa with varying functional traits.  相似文献   

11.
Bumble bees (genus Bombus) are important pollinators with more than 260 species found worldwide, many of which are in decline. Twenty‐five species occur in California with the highest species abundance and diversity found in coastal, northern, and montane regions. No recent studies have examined California bumble bee diversity across large spatial scales nor explored contemporary community composition patterns across the state. To fill these gaps, we collected 1740 bumble bee individuals, representing 17 species from 17 sites (~100 bees per site) in California, using an assemblage monitoring framework. This framework is intended to provide an accurate estimate of relative abundance of more common species without negatively impacting populations through overcollection. Our sites were distributed across six ecoregions, with an emphasis on those that historically hosted high bumble bee diversity. We compared bumble bee composition among these sites to provide a snapshot of California bumble bee biodiversity in a single year. Overall, the assemblage monitoring framework that we employed successfully captured estimated relative abundance of species for most sites, but not all. This shortcoming suggests that bumble bee biodiversity monitoring in California might require multiple monitoring approaches, including greater depth of sampling in some regions, given the variable patterns in bumble bee abundance and richness throughout the state. Our study sheds light on the current status of bumble bee diversity in California, identifies some areas where greater sampling effort and conservation action should be focused in the future, and performs the first assessment of an assembly monitoring framework for bumble bee communities in the state.  相似文献   

12.
Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services.  相似文献   

13.
Perennial wildflower strips (WFS) are known to have positive effects on wild bees in intensively used agricultural landscapes. Little knowledge exists, however, about the drivers of wild bee occurrence and if Red List species also profit from this agri-environmental scheme (AES). Therefore, we studied wild bees on transects along 20 four- to five-year-old WFS and in 10 cereal fields without AES (CONTROL sites) in differently structured landscapes across Saxony-Anhalt (Germany). In addition to local site parameters, we measured parameters of landscape structure in a 1 km radius of the WFS and CONTROL sites. The overall species richness of wild bees (125 species in total, 23 on average), including numerous specialist and Red List species, indicates a high attractiveness of perennial WFS sown with 30 native forbs. In CONTROL fields, 11 bee species (on average only one) were found.The species richness and abundance of wild bees were positively affected by local site conditions of the WFS and CONTROL sites, such as the overall number of sown and spontaneous forbs, the amount of flower rewards of sown forbs available to pollinators (Pollinator Feeding Index), and negatively by the cover of grasses. Therefore, seed mixtures of future AES should comprise a high diversity of wildflower species relevant as pollen sources for wild bees. The share of Red List wild bee species was strongly influenced by the landscape context and increased e.g. with Shannon landscape diversity and the availability of non-forest woody habitats and water bodies in the 1 km surroundings. These results suggest that besides the establishment of high-diversity WFS, semi-natural habitat structures have to be promoted to preserve rare wild bees especially in structurally simple agricultural landscapes.  相似文献   

14.
Wild bees form diverse communities that pollinate plants in both native and agricultural ecosystems making them both ecologically and economically important. The growing evidence of bee declines has sparked increased interest in monitoring bee community and population dynamics using standardized methods. Here, we studied the dynamics of bee biodiversity within and across years by monitoring wild bees adjacent to four apple orchard locations in Southern Pennsylvania, USA. We collected bees using passive Blue Vane traps continuously from April to October for 6 years (2014–2019) amassing over 26,000 bees representing 144 species. We quantified total abundance, richness, diversity, composition, and phylogenetic structure. There were large seasonal changes in all measures of biodiversity with month explaining an average of 72% of the variation in our models. Changes over time were less dramatic with years explaining an average of 44% of the variation in biodiversity metrics. We found declines in all measures of biodiversity especially in the last 3 years, though additional years of sampling are needed to say if changes over time are part of a larger trend. Analyses of population dynamics over time for the 40 most abundant species indicate that about one third of species showed at least some evidence for declines in abundance. Bee family explained variation in species‐level seasonal patterns but we found no consistent family‐level patterns in declines, though bumble bees and sweat bees were groups that declined the most. Overall, our results show that season‐wide standardized sampling across multiple years can reveal nuanced patterns in bee biodiversity, phenological patterns of bees, and population trends over time of many co‐occurring species. These datasets could be used to quantify the relative effects that different aspects of environmental change have on bee communities and to help identify species of conservation concern.  相似文献   

15.
The decline of bees has raised concerns regarding their conservation and the maintenance of ecosystem services they provide to bee-pollinated wild flowers and crops. Although the Mediterranean region is a hotspot for bee species richness, their status remains poorly studied. There is an urgent need for cost-effective, reliable, and unbiased sampling methods that give good bee species richness estimates. This study aims: (a) to assess bee species richness in two common Mediterranean habitat types: semi-natural scrub (phrygana) and managed olive groves; (b) to compare species richness in those systems to that of other biogeographic regions, and (c) to assess whether six different sampling methods (pan traps, variable and standardized transect walks, observation plots and trap nests), previously tested in other European biogeographic regions, are suitable in Mediterranean communities. Eight study sites, four per habitat type, were selected on the island of Lesvos, Greece. The species richness observed was high compared to other habitat types worldwide for which comparable data exist. Pan traps collected the highest proportion of the total bee species richness across all methods at the scale of a study site. Variable and standardized transect walks detected the highest total richness over all eight study sites. Trap nests and observation plots detected only a limited fraction of the bee species richness. To assess the total bee species richness in bee diversity hotspots, such as the studied habitats, we suggest a combination of transect walks conducted by trained bee collectors and pan trap sampling.  相似文献   

16.
Succession of bee communities on fallows   总被引:4,自引:0,他引:4  
Wild bee communities were studied on one- to five-year-old set-aside fields with naturally developed vegetation (n = 20). and old orchard meadows (n = 4) to analyse effects of secondary succession on species diversity, resource use and associated life history traits. General theory predicts a steady increase of species richness with age of succession. In contrast, we found a first maximum in species richness of bees on two-year-old set-aside fields and a second on old meadows. Successional changes of bee communities were related to changes of vegetation. The transition from pioneer successional stages, dominated by annuals, to early successional stages, dominated by perennials, resulted in the highest species richness of flowering plants in the second year within the first five years of succession. Species richness of flowering plants was the best predictor variable for species richness of bees, whereas the cover of flowering plants correlated with the abundance of bees. Annual plants were visited more often and perennials less often than expected from their flower cover. Halictidae tended to prefer flowers of annuals, whereas Megachilidae. Apidae and Anthophoridae significantly preferred perennials. In departure from successional theory, body size, proportion of specialised bees and proportion of parasitic bees did not significantly increase with successional age, but number of generations and the proportion of soil-nesting bees decreased with successional age. Comparison of different management types showed that set-aside fields with naturally developed vegetation supported much more specialised and endangered bee species than set-aside fields sown with Phacelia tanacetifolia.  相似文献   

17.
传粉蜂为作物生产和粮食安全提供重要的生态系统服务。随着农业经济的不断发展,土地利用强度加剧,大量自然或半自然生境已经转变为农业用地。景观均质化和集约化管理导致野生蜂多样性下降,从而威胁到农业可持续生产。本研究以北京市昌平区苹果园为对象,探究景观复杂度(半自然生境比例)、局地管理强度(地表开花植物多样性和土壤全氮)及其交互作用对传粉蜂多样性的影响。结果表明: 共捕获传粉蜂8642头,其中人工蜂5125头,野生蜂分属5科14属49种3517头。传粉蜂多样性对景观复杂度和局地管理强度响应的最优尺度在500 m。样点半径500 m范围内,总传粉蜂和野生蜂多度随周围半自然生境增加均呈显著上升趋势。景观复杂度与开花植物多样性的交互作用对总传粉蜂和野生蜂物种丰富度有显著影响。当景观复杂度较低时(≤29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著正相关;而当景观复杂度较高时(>29.9%),总传粉蜂和野生蜂物种丰富度与开花植物多样性呈显著负相关。此外,人工蜂多度随果园内局地开花植物多样性和土壤全氮增加呈显著升高趋势。土壤全氮与开花植物多样性的交互作用对人工蜂多度有显著影响。当土壤全氮含量较低时(≤1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著正相关;而当土壤全氮含量较高时(>1.9 g·kg-1),人工蜂多度与开花植物多样性呈显著负相关。农业景观中半自然生境比例的增加有利于提高野生蜂多度,而地表开花植物多样性可以促进传粉蜂多样性,但是受到景观尺度(半自然生境比例)和局地尺度(氮肥施用)的影响。因此,农业景观中野生蜂多样性的维持需要综合考虑多尺度因素来制定保护策略。尽可能保留更高比例的耕地仍然是生产的长期需求,而保持中等景观复杂度,增加地表开花植物多样性,减少氮肥施用量将是促进苹果园传粉蜂多样性的有效方式。  相似文献   

18.
Bee species diversity and the effectiveness of four sampling methods were investigated in a west-central Illinois restored tallgrass prairie. Bees were sampled using malaise traps, ground-level pan traps, elevated pan traps, and vane traps. A total of 4,622 bees representing 31 genera and 111 species were collected. Malaise traps collected the greatest number of bees and species, and ground-level pan traps the least. Among the pan traps and vane traps, blue-colored traps collected the greatest abundance and species richness, and yellow traps the least. Chao1 estimator and rarefaction analyses showed that substantial increases in sample sizes would be necessary to achieve asymptotic species richness levels, particularly if ground-level pan traps alone were used. Elevated pan traps and vane traps collected relatively similar species composition. Different colored pan traps at the same height collected more similar species composition than did those at different heights, but species composition of blue ground-level pan traps was relatively similar to elevated pan traps, regardless of color. Indicator species analysis revealed 22 species that were significantly associated with a specific trap type, and 11 species that were associated with a particular pan trap color/elevation. Results of this study show that elevated traps can increase the effectiveness of bee surveys in tallgrass prairie, and that a combination of trap types gives a more complete picture of the bee fauna than does a single survey method. These results should be considered along with cost, ease of use, and goals when planning and designing bee inventories.  相似文献   

19.
The preservation of pollinator habitat on croplands in the form of hedgerows, wildflower strips, and natural and semi-natural areas can help maintain and enhance wild bee populations in agricultural landscapes. However, there have been few comparisons of the effectiveness of different types of field-margin pollinator habitat in maintaining bee diversity and pollination of the focal crops. We compared wild bee abundance, species richness and community composition between strawberry crops bordered by hedgerows, and those bordered by larger expanses of natural land (forests). Strawberry is an ideal crop in which to investigate pollinator export from field margins as the rows are covered with straw, which reduces habitat for ground-nesting bees within the crop; thus, most wild pollinators need to enter the crop from the margins. We sampled bees in six strawberry fields with hedgerow margins and six strawberry fields with forested margins of at least 200 m in length, using a paired design. We examined strawberry pollen deposition at regular intervals into the fields, and the magnitude of pollinator export from the field margins towards the centre of the crops. We found that bees as a group were no more species-rich or abundant in crops bordered by forests than in crops bordered by hedgerows, although large-bodied bees were more abundant in the former than the latter. Regardless of field-margin type, we found that small wild bee abundance declined significantly from the edge to the centre of the crop, but honey bee (Apis mellifera L.) and large-bodied bee abundance did not. Strawberry pollen deposition also did not decline with distance into the crop. Although previous work indicates that small wild bees are more effective (yield-increasing) pollinators of strawberry on a per-visit basis, their limited foraging ranges suggest they may only pollinate areas near the crop margins, given typical field sizes in our area.  相似文献   

20.
Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号