共查询到20条相似文献,搜索用时 0 毫秒
1.
Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade‐offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade‐off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade‐offs between pre‐ and post‐copulatory traits. 相似文献
2.
Jeremy S. Morris David R. Carrier 《Evolution; international journal of organic evolution》2016,70(4):767-780
Lifetime reproductive success of males is often dependent upon the ability to physically compete for mates. However, species variation in social structure leads to differences in the relative importance of intraspecific aggression. Here, we present a large comparative dataset on sexual dimorphism in skeletal shape in Carnivora to test the hypotheses that carnivorans exhibit sexual dimorphism in skeletal anatomy that is reflective of greater specialization for physical aggression in males relative to females and that this dimorphism is associated with the intensity of sexual selection. We tested these hypotheses using a set of functional indices predicted to improve aggressive performance. Our results indicate that skeletal shape dimorphism is widespread within our sample. Functional traits thought to enhance aggressive performance are more pronounced in males. Phylogenetic model selection suggests that the evolution of this dimorphism is driven by sexual selection, with the best‐fitting model indicating greater dimorphism in polygynous versus nonpolygynous species. Skeletal shape dimorphism is correlated with body size dimorphism, a common indicator of the intensity of male–male competition, but not with mean body size. These results represent the first evidence of sexual dimorphism in the primary locomotor system of a large sample of mammals. 相似文献
3.
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male–male, male–female and female–female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade‐off between male mating success and offspring quality. 相似文献
4.
《Ethology, Ecology and Evolution》2012,24(1):73-77
Prey may respond evolutionarily to predator pressure either by removing themselves from the foraging microhabitat of the predators (predator avoidance mechanisms) or by reducing the probability of successful predation when they are within the perceptual field of the predators (antipredator mechanisms). These two categories of survival mechanisms are under different selective regimes and the evolution of one type of prey survival mechanism reduces selection on the other. 相似文献
5.
James P. Dines Sarah L. Mesnick Katherine Ralls Laura May‐Collado Ingi Agnarsson Matthew D. Dean 《Evolution; international journal of organic evolution》2015,69(6):1560-1572
Mating with multiple partners is common across species, and understanding how individual males secure fertilization in the face of competition remains a fundamental goal of evolutionary biology. Game theory stipulates that males have a fixed budget for reproduction that can lead to a trade‐off between investment in precopulatory traits such as body size, armaments, and ornaments, and postcopulatory traits such as testis size and spermatogenic efficiency. Recent theoretical and empirical studies have shown that if males can monopolize access to multiple females, they will invest disproportionately in precopulatory traits and less in postcopulatory traits. Using phylogenetically controlled comparative methods, we demonstrate that across 58 cetacean species with the most prominent sexual dimorphism in size, shape, teeth, tusks, and singing invest significantly less in relative testes mass. In support of theoretical predictions, these species tend to show evidence of male contests, suggesting there is opportunity for winners to monopolize access to multiple females. Our approach provides a robust dataset with which to make predictions about male mating strategies for the many cetacean species for which adequate behavioral observations do not exist. 相似文献
6.
Willian T. A. F. Silva Paula Sez‐Espinosa Stphanie Torijo‐Boix Alejandro Romero Caroline Devaux Mathilde Durieux María Jos Gmez‐Torres Simone Immler 《Journal of evolutionary biology》2019,32(6):535-544
Sperm function and quality are primary determinants of male reproductive performance and hence fitness. The presence of rival males has been shown to affect ejaculate and sperm traits in a wide range of taxa. However, male physiological conditions may not only affect sperm phenotypic traits but also their genetic and epigenetic signatures, affecting the fitness of the resulting offspring. We investigated the effects of male‐male competition on sperm quality using TUNEL assays and geometric morphometrics in the zebrafish, Danio rerio. We found that the sperm produced by males exposed to high male–male competition had smaller heads but larger midpiece and flagellum than sperm produced by males under low competition. Head and flagella also appeared less sensitive to the osmotic stress induced by activation with water. In addition, more sperm showed signals of DNA damage in ejaculates of males under high competition. These findings suggest that the presence of a rival male may have positive effects on sperm phenotypic traits but negative effects on sperm DNA integrity. Overall, males facing the presence of rival males may produce faster swimming and more competitive sperm but this may come at a cost for the next generation. 相似文献
7.
The outcome of sibling competition for food is often determined by variation in body size within the brood and involves trade‐offs; traits that enhance competitive ability within the nest may be developed at the expense of traits that enable effective flight at fledging, or vice versa. We quantified growth of skeletal, body mass and feather traits in male and female Blue Tit Cyanistes caeruleus nestlings. Males were significantly heavier, had longer tarsi and tended to have greater head–bill lengths than females, whereas females were similar to males in wing flight feather growth. These differences in growth may result from sexual differences in selection of the traits. Females are likely to prioritize feather growth to facilitate synchronized fledging with the rest of the brood, and to enhance escape from predators. We suggest that males are heavier and develop longer tarsi because body size is an important determinant of male reproductive success. 相似文献
8.
- Life‐history strategies are known to shift with latitude in many species. While life‐history variation related to body size, reproductive investment, and behavior has been studied for years, another crucial life‐history component is the immune system, which can influence an animal's survival.
- We measured selected life‐history traits in side‐blotched lizards in southern Utah and Oregon in the field for two consecutive years and conducted a common‐garden experiment in the laboratory to determine how organisms from different latitudes optimize either immunity or reproduction. We observed lizards from southern populations, which are known to be shorter‐lived, had lower immune function during reproduction when compared to northern lizards in 2012, but the relationship reversed in the following year.
- Our laboratory study revealed that southern lizards healed cutaneous wounds faster and had higher microbiocidal ability when compared to their northern counterparts, but lost mass doing so. The northern lizards ate more than the southern ones and maintained their body mass. It is possible that northern lizards are better adapted to taking advantage of available food resources. Alternatively, southern lizards may have exhibited sickness behavior in response to an immune challenge or reacted more strongly to the stress of captivity.
- We found differences in life‐history strategies used by animals from different latitudes, and that these changes can shift within a population depending on the weather conditions of the year. Furthermore, when taken from the field and placed into a common‐garden environment, some of these differences in strategy appear to be intrinsic to the animals (i.e., whether they came from southern or northern populations).
9.
Kelly A. Stiver Holly K. Kindsvater Natascia Tamburello Kellie L. Heckman Joanne Klein Suzanne H. Alonzo 《Journal of fish biology》2018,93(2):324-333
This paper describes how individual female ocellated wrasse Symphodus ocellatus distribute their spawning among males and nests in space and time. It is based on previously collected genetic data of larvae from ten different nests (used to reconstruct half and full‐sibling groupings both within and among nests on multiple days) and behavioural data of marked females across the reproductive season. Both the genetic analyses and behavioural observations confirm that female S. ocellatus intentionally engage in multiple mating, by repeatedly spawning at the same nest on different days and at several different nests (up to 12 spawning events over 3 weeks), leading to mixed paternity among her young. The main benefit of such high and intentional multiple mating is probably insurance against brood failure due to nest predation, desertion or poor paternal care by the male. These findings reveal that even in systems where females attempt to avoid male‐controlled mixed paternity, they may still engage in intentional multiple mating due to these potential benefits. 相似文献
10.
Zahida Sultanova Roberto García‐Roa Pau Carazo 《Journal of evolutionary biology》2020,33(8):1086-1096
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions. 相似文献
11.
R. A. Krebs S. P. Roberts B. R. Bettencourt M. E. Feder 《Journal of evolutionary biology》2001,14(1):75-82
To examine how the duration of laboratory domestication may affect Drosophila stocks used in studies of thermotolerance, we measured expression of the inducible heat‐shock protein Hsp70 and survival after heat shock in D. melanogaster strains recently collected from nature and maintained in laboratory culture for up to 50 or more generations. After an initial increase in both Hsp70 expression and thermotolerance immediately after transfer to laboratory medium, both traits remained fairly constant over time and variation among strains persisted through laboratory domestication. Furthermore, variation in heat tolerance and Hsp70 expression did not correlate with the length of time populations evolved in the laboratory. Therefore, while environmental variation likely contributed most to early shifts in strain tolerance and Hsp70 expression, other population parameters, for example genetic drift, inbreeding, and selection likely affected these traits little. As long as populations are maintained with large numbers of individuals, the culture of insects in the laboratory may have little effect on the tolerance of different strains to thermal stress. 相似文献
12.
While deploying immune defences early in ontogeny can trade‐off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade‐offs with important adult traits. Here, we tested for predator‐dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune‐challenged larvae had later emergence overall and lower survival in pools with predators. Immune‐challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages. 相似文献
13.
Michael S. Reichert 《Biological journal of the Linnean Society. Linnean Society of London》2013,109(1):131-145
Animal signal characteristics vary at multiple levels, and this variation can be related to the selective forces acting on signal structure. However, the effectiveness of selection acting on any one signal type may depend on selective forces acting on the same characteristics in other signal types, particularly if the signals share a common physical production mechanism. In anurans, signal variability has been related to the potential for various forms of selection by female choice on the characteristics of male advertisement calls. The significance of variability in the characteristics of another vocalization type, the aggressive call, is less well understood. In the present stiudy, within‐ and between‐male variability was measured in several characteristics of both advertisement and aggressive calls in the treefrog Dendropsophus ebraccatus. Many characteristics of both call types were repeatable within males. Fine‐temporal and spectral characteristics generally had low variation within males, whereas gross‐temporal characteristics were more variable. Unexpectedly, there were strong correlations between both measures of variability and mean values of the call characteristics of advertisement and aggressive calls. Thus, despite potentially conflicting selection pressures acting on advertisement and aggressive calls, the characteristics of individuals' calls were consistent across these two signal types. The potential forces responsible for consistency across call types are discussed, including morphological constraints and behavioural syndromes that act across different signalling contexts. In general, it is argued that measurements of variability made across multiple signal types, as in the present study, can provide important insights into the evolution of signal structure in organisms with complex signal repertoires. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 131–145. 相似文献
14.
15.
Energetically demanding migrations may impact the resources available for reproductive trait development and activity, and hence favour evolution of new investment strategies for remaining resources. We conducted a large-scale experiment to evaluate the proximate cost of migration on male reproductive investment in chinook salmon (Oncorhynchus tshawytscha) and contemporary evolution of reproductive allocation. Experimentally induced differences in migratory costs (17 km inland and 17 m elevation vs. 100 km and 430 m) influenced dorsal hump size and upper jaw length, two traits influencing male mating success that are developed during migration. Longer migration also reduced tissue energy reserves available for competition and length of breeding life. Corresponding shifts in the balance between natural and sexual selection appear to have been responsible for heritable population divergence in secondary sexual trait investment, in approximately 26 generations, following colonization of spawning sites with different migratory demands. 相似文献
16.
Tim Connallon Matthew D. Hall 《Evolution; international journal of organic evolution》2016,70(10):2186-2198
Females and males have conflicting evolutionary interests. Selection favors the evolution of different phenotypes within each sex, yet divergence between the sexes is constrained by the shared genetic basis of female and male traits. Current theory predicts that such “sexual antagonism” should be common: manifesting rapidly during the process of adaptation, and slow in its resolution. However, these predictions apply in temporally stable environments. Environmental change has been shown empirically to realign the direction of selection acting on shared traits and thereby alleviate signals of sexually antagonistic selection. Yet there remains no theory for how common sexual antagonism should be in changing environments. Here, we analyze models of sex‐specific evolutionary divergence under directional and cyclic environmental change, and consider the impact of genetic correlations on long‐run patterns of sex‐specific adaptation. We find that environmental change often aligns directional selection between the sexes, even when they have divergent phenotypic optima. Nevertheless, some forms of environmental change generate persistent sexually antagonistic selection that is difficult to resolve. Our results reinforce recent empirical observations that changing environmental conditions alleviate conflict between males and females. They also generate new predictions regarding the scope for sexually antagonistic selection and its resolution in changing environments. 相似文献
17.
James D. Fry 《Evolution; international journal of organic evolution》2010,64(5):1510-1516
Sexually antagonistic polymorphisms are polymorphisms in which the allele that is advantageous in one sex is deleterious in the other sex. In an influential 1984 paper, W. Rice hypothesized that such polymorphisms should be relatively common on the X chromosome (or on the W in female‐heterogametic species) but relatively rare on the autosomes. Here, I show that there are plausible assumptions under which the reverse is expected to be true, and point out recent studies that give evidence for sexually antagonistic variation on the autosomes. Although more work is needed to resolve the issue, it is premature to conclude that the X chromosome is a “hot spot” for the accumulation of sexually antagonistic variation. 相似文献
18.
L. B. Symes M. P. Ayres C. P. Cowdery R. A. Costello 《Evolution; international journal of organic evolution》2015,69(6):1518-1527
Physiology, physics, and ecological interactions can generate trade‐offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade‐offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade‐offs between the duration and repetition rate of acoustic signals—species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade‐offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade‐offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations. 相似文献
19.
Sexual size dimorphism (SSD) is widespread in animals, especially in lizards (Reptilia: Squamata), and is driven by fecundity selection, male–male competition, or other adaptive hypotheses. However, these selective pressures may vary through different life history periods; thus, it is essential to assess the relationship between growth and SSD. In this study, we tracked SSD dynamics between a “fading‐tail color skink” (blue tail skink whose tail is only blue during its juvenile stage: Plestiodon elegans) and a “nonfade color” tail skink (retains a blue tail throughout life: Plestiodon quadrilineatus) under a controlled experimental environment. We fitted growth curves of morphological traits (body mass, SVL, and TL) using three growth models (Logistic, Gompertz, and von Bertalanffy). We found that both skinks have male‐biased SSD as adults. Body mass has a higher goodness of fit (as represented by very high R2 values) using the von Bertalanffy model than the other two models. In contrast, SVL and TL for both skinks had higher goodness of fit when using the Gompertz model. Two lizards displayed divergent life history tactics: P. elegans grows faster, matures earlier (at 65 weeks), and presents an allometric growth rate, whereas P. quadrilineatus grows slower, matures later (at 106 weeks), and presents an isometric growth rate. Our findings imply that species‐ and sex‐specific trade‐offs in the allocation of energy to growth and reproduction may cause the growth patterns to diverge, ultimately resulting in the dissimilar patterns of SSD. 相似文献
20.
Telomere dynamics in natural populations have been linked to survival, reproduction, and energetic investment. Given their putative role in mediating life‐history trade‐offs, telomeres are also a likely candidate for maintaining honesty in sexually selected signals; few studies to date, however, have demonstrated a correlation between sexual signals and telomere dynamics. Here, we show that plumage coloration in male common yellowthroats (Geothlypis trichas) is correlated with both relative telomere length and with the rate of telomere loss between years. Elevated antioxidant capacity is also associated with reduced telomere loss, but only among older males. Previous work in this population has demonstrated that males with brighter plumage are in better condition, have higher reproductive success, and are more likely to survive over winter. Thus, the signal attribute associated with mate choice in this system also conveys reliable information about telomere dynamics. At present, it is unclear whether telomere maintenance plays a causal role in maintaining signal honesty or whether the correlation arises due to underlying variation in individual resources or genotypes. We suggest that subsequent work should consider the possibility that fundamental trade‐offs between signal investment and cell‐level processes that influence aging and reproductive senescence may provide a foundation for understanding the maintenance of sexual signal honesty. 相似文献