首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To understand better the representation of arctic tundra vegetation by pollen data, we analysed pollen assemblages and pollen accumulation rates (PARs) in the surface sediments of lakes. Location Modern sediment samples were collected from seventy‐eight lakes located in the Arctic Foothills and Arctic Coastal Plain regions of northern Alaska. Methods For seventy of the lakes, we analysed pollen and spores in the upper 2 cm of the sediment and calculated the relative abundance of each taxon (pollen percentages). For eleven of the lakes, we used 210Pb analysis to determine sediment accumulation rates, and analysed pollen in the upper 10–15 cm of the sediment to estimate modern PARs. Using a detailed land‐cover map of northern Alaska, we assigned each study site to one of five tundra types: moist dwarf‐shrub tussock‐graminoid tundra (DST), moist graminoid prostrate‐shrub tundra (PST) (coastal and inland types), low‐shrub tundra (LST) and wet graminoid tundra (WGT). Results Mapped pollen percentages and multivariate comparison of the pollen data using discriminant analysis show that pollen assemblages vary along the main north–south vegetational and climatic gradients. On the Arctic Coastal Plain where climate is cold and dry, graminoid‐dominated PST and WGT sites were characterized by high percentages of Cyperaceae and Poaceae pollen. In the Arctic Foothills where climate is warmer and wetter, shrub‐dominated DST, PST and LST were characterized by high percentages of Alnus and Betula pollen. Small‐scale variations in tundra vegetation related to edaphic variability are also represented by the pollen data. Discriminant analysis demonstrated that DST sites could be distinguished from foothills PST sites based on their higher percentages of Ericales and Rubus chamaemorus pollen, and coastal PST sites could be distinguished from WGT sites based on their higher percentages of Artemisia. PARs appear to reflect variations in overall vegetation cover, although the small number of samples limits our understanding of these patterns. For coastal sites, PARs were higher for PST than WGT, whereas in the Arctic Foothills, PARs were highest in LST, intermediate in DST, and lowest in PST. Main conclusion Modern pollen data from northern Alaska reflect patterns of tundra vegetation related to both regional‐scale climatic gradients and landscape‐scale edaphic heterogeneity.  相似文献   

2.
Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest‐tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in 11, widely distributed Siberian ecotonal landscapes by comparing very high‐resolution photography from the Cold War‐era ‘Gambit’ and ‘Corona’ satellite surveillance systems (1965–1969) with modern imagery. We also analyzed within‐landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of 11 ecotones. In northwest Siberia, alder (Alnus) shrubland cover increased 5.3–25.9% in five ecotones. In Taymyr and Yakutia, larch (Larix) cover increased 3.0–6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice‐rich permafrost. In Chukotka, the total cover of alder and dwarf pine (Pinus) increased 6.1% within one ecotone and was little changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned‐ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid‐1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape scale. Our results indicate that extensive changes can occur within decades in moist, shrub‐dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental, larch‐dominated ecotones of central and eastern Siberia.  相似文献   

3.
The nature of spatial transitions in the Arctic   总被引:3,自引:0,他引:3  
Aim Describe the spatial and temporal properties of transitions in the Arctic and develop a conceptual understanding of the nature of these spatial transitions in the face of directional environmental change. Location Arctic tundra ecosystems of the North Slope of Alaska and the tundra‐forest region of the Seward Peninsula, Alaska Methods We synthesize information from numerous studies on tundra and treeline ecosystems in an effort to document the spatial changes that occur across four arctic transitions. These transitions are: (i) the transition between High‐Arctic and Low‐Arctic systems, (ii) the transition between moist non‐acidic tundra (MNT) and moist acidic tundra (MAT, also referred to as tussock tundra), (iii) the transition between tussock tundra and shrub tundra, (iv) the transition between tundra and forested systems. By documenting the nature of these spatial transitions, in terms of their environmental controls and vegetation patterns, we develop a conceptual model of temporal dynamics of arctic ecotones in response to environmental change. Results Our observations suggest that each transition is sensitive to a unique combination of controlling factors. The transition between High and Low Arctic is sensitive primarily to climate, whereas the MNT/MAT transition is also controlled by soil parent material, permafrost and hydrology. The tussock/shrub tundra transition appears to be responsive to several factors, including climate, topography and hydrology. Finally, the tundra/forest boundary responds primarily to climate and to climatically associated changes in permafrost. There were also important differences in the demography and distribution of the dominant plant species across the four vegetation transitions. The shrubs that characterize the tussock/shrub transition can achieve dominance potentially within a decade, whereas spruce trees often require several decades to centuries to achieve dominance within tundra, and Sphagnum moss colonization of non‐acidic sites at the MNT/MAT boundary may require centuries to millennia of soil development. Main conclusions We suggest that vegetation will respond most rapidly to climatic change when (i) the vegetation transition correlates more strongly with climate than with other environmental variables, (ii) dominant species exhibit gradual changes in abundance across spatial transitions, and/or (iii) the dominant species have demographic properties that allow rapid increases in abundance following climatic shifts. All three of these properties characterize the transition between tussock tundra and low shrub tundra. It is therefore not surprising that of the four transitions studied this is the one that appears to be responding most rapidly to climatic warming.  相似文献   

4.
The spatial heterogeneity of recent decadal dynamics in vegetation greenness and biomass in response to changes in summer warmth index (SWI) was investigated along spatial gradients on the Arctic Slope of Alaska. Image spatial analysis was used to examine the spatial pattern of greenness dynamics from 1991 to 2000 as indicated by variations of the maximum normalized difference vegetation index (Peak NDVI) and time‐integrated NDVI (TI‐NDVI) along latitudinal gradients. Spatial gradients for both the means and temporal variances of the NDVI indices for 0.1° latitude intervals crossing three bioclimate subzones were analyzed along two north–south Arctic transects. NDVI indices were generally highly variable over the decade, with great heterogeneity across the transects. The greatest variance in TI‐NDVI was found in low shrub vegetation to the south (68.7–68.8°N) and corresponded to high fractional cover of shrub tundra and moist acidic tundra (MAT), while the greatest variance in Peak‐NDVI predominately occurred in areas dominated by wet tundra (WT) and moist nonacidic tundra (MNT). Relatively high NDVI temporal variances were also related to specific transitional areas between dominant vegetation types. The regional temporal variances of NDVI from 1991 to 2000 were largely driven by meso‐scale climate dynamics. The spatial heterogeneity of the NDVI variance was mostly explained by the fractional land cover composition, different responses of each vegetation type to climate change, and patterned ground features. Aboveground plant biomass exhibited similar spatial heterogeneity as TI‐NDVI; however, spatial patterns are slightly different from NDVI because of their nonlinear relationship.  相似文献   

5.
The springtime transition to regional‐scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze–thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO2 inversions using a CASA‐GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic‐onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with better correlation to above‐freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed.  相似文献   

6.
Shrubs are the largest plant life form in tundra ecosystems; therefore, any changes in the abundance of shrubs will feedback to influence biodiversity, ecosystem function, and climate. The snow–shrub hypothesis asserts that shrub canopies trap snow and insulate soils in winter, increasing the rates of nutrient cycling to create a positive feedback to shrub expansion. However, previous work has not been able to separate the abiotic from the biotic influences of shrub canopies. We conducted a 3‐year factorial experiment to determine the influences of canopies on soil temperatures and nutrient cycling parameters by removing ~0.5 m high willow (Salix spp.) and birch (Betula glandulosa) shrubs, creating artificial shrub canopies and comparing these manipulations to nearby open tundra and shrub patches. Soil temperatures were 4–5°C warmer in January, and 2°C cooler in July under shrub cover. Natural shrub plots had 14–33 cm more snow in January than adjacent open tundra plots. Snow cover and soil temperatures were similar in the manipulated plots when compared with the respective unmanipulated treatments, indicating that shrub canopy cover was a dominant factor influencing the soil thermal regime. Conversely, we found no strong evidence of increased soil decomposition, CO2 fluxes, or nitrate or ammonia adsorbtion under artificial shrub canopy treatments when compared with unmanipulated open tundra. Our results suggest that the abiotic influences of shrub canopy cover alone on nutrient dynamics are weaker than previously asserted.  相似文献   

7.
Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape‐scale controls on potential production of these compounds using a one‐year laboratory incubation at two temperatures (10° and 30 °C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80–370 mg CO2‐C g soil C?1 and 5–46 mg DOC g soil C?1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.  相似文献   

8.
Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.  相似文献   

9.
Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above‐ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a ‘space‐for‐time’ approach to test the hypothesis that a shift from lower‐productivity tundra heath to higher‐productivity deciduous shrub vegetation in the sub‐Arctic may lead to a loss of soil C that out‐weighs the increase in above‐ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg) is significantly lower at shrub (2.98 ± 0.48 kg m?2) and forest (2.04 ± 0.25 kg m?2) plots than at heath plots (7.03 ± 0.79 kg m?2). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.  相似文献   

10.
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.  相似文献   

11.
Climatic warming during the last glacial–interglacial transition (LGIT) was punctuated by reversals to glacial‐like conditions. Palaeorecords of ecosystem change can help document the geographical extent of these events and improve our understanding of biotic sensitivity to climatic forcing. To reconstruct ecosystem and climatic variations during the LGIT, we analyzed lake sediments from southwestern Alaska for fossil pollen assemblages, biogenic‐silica content (BSiO2%), and organic‐carbon content (OC%). Betula shrub tundra replaced herb tundra as the dominant vegetation of the region around 13 600 cal BP (cal BP: 14C calibrated calendar years before present), as inferred from an increase of Betula pollen percentages from << 5% to >> 20% with associated decreases in Cyperaceae, Poaceae, and Artemisia. At c. 13 000 cal BP, a decrease of Betula pollen from 28 to << 5% suggests that shrub tundra reverted to herb tundra. Shrub tundra replaced herb tundra to resume as the dominant vegetation at 11 600 cal BP. Higher OC% and BSiO2% values suggest more stable soils and higher aquatic productivity during shrub‐tundra periods than during herb‐tundra periods, although pollen changes lagged behind changes in the biogeochemical indicators before c. 13 000 cal BP. Comparison of our palaeoecological data with the ice‐core dδ18O record from Greenland reveals strikingly similar patterns from the onset through the termination of the Younger Dryas (YD). This similarity supports the hypothesis that, as in the North Atlantic region, pronounced YD climatic oscillations occurred in the North Pacific region. The rapidity and magnitude of ecological changes at the termination of the YD are consistent with greenhouse experiments and historic photographs demonstrating tundra sensitivity to climatic forcing.  相似文献   

12.
Arctic warming is resulting in reduced snow cover and increased shrub growth, both of which have been associated with altered land surface–atmospheric feedback processes involving sensible heat flux, ground heat flux and biogeochemical cycling. Using field measurements, we show that two common Arctic shrub species (Betula glandulosa and Salix pulchra), which are largely responsible for shrub encroachment in tundra, differed markedly in albedo and that albedo of both species increased as growing season progressed when measured at their altitudinal limit. A moveable apparatus was used to repeatedly measure albedo at six precise spots during the summer of 2012, and resampled in 2013. Contrary to the generally accepted view of shrub‐covered areas having low albedo in tundra, full‐canopy prostrate B. glandulosa had almost the highest albedo of all surfaces measured during the peak of the growing season. The higher midsummer albedo is also evident in localized MODIS albedo aggregated from 2000 to 2013, which displays a similar increase in growing‐season albedo. Using our field measurements, we show the ensemble summer increase in tundra albedo counteracts the generalized effect of earlier spring snow melt on surface energy balance by approximately 40%. This summer increase in albedo, when viewed in absolute values, is as large as the difference between the forest and tundra transition. These results indicate that near future (<50 years) changes in growing‐season albedo related to Arctic vegetation change are unlikely to be particularly large and might constitute a negative feedback to climate warming in certain circumstances. Future efforts to calculate energy budgets and a sensible heating feedback in the Arctic will require more detailed information about the relative abundance of different ground cover types, particularly shrub species and their respective growth forms and phenology.  相似文献   

13.
Recent climate warming in the Arctic has caused advancement in the timing of snowmelt and expansion of shrubs into open tundra. Such an altered climate may directly and indirectly (via effects on vegetation) affect arctic arthropod abundance, diversity and assemblage taxonomic composition. To allow better predictions about how climate changes may affect these organisms, we compared arthropod assemblages between open and shrub‐dominated tundra at three field sites in northern Alaska that encompass a range of shrub communities. Over ten weeks of sampling in 2011, pitfall traps captured significantly more arthropods in shrub plots than open tundra plots at two of the three sites. Furthermore, taxonomic richness and diversity were significantly greater in shrub plots than open tundra plots, although this pattern was site‐specific as well. Patterns of abundance within the five most abundant arthropod orders differed, with spiders (Order: Araneae) more abundant in open tundra habitats and true bugs (Order: Hemiptera), flies (Order: Diptera), and wasps and bees (Order: Hymenoptera) more abundant in shrub‐dominated habitats. Few strong relationships were found between vegetation and environmental variables and arthropod abundance; however, lichen cover seemed to be important for the overall abundance of arthropods. Some arthropod orders showed significant relationships with other vegetation variables, including maximum shrub height (Coleoptera) and foliar canopy cover (Diptera). As climate warming continues over the coming decades, and with further shrub expansion likely to occur, changes in arthropod abundance, richness, and diversity associated with shrub‐dominated habitat may have important ecological effects on arctic food webs since arthropods play important ecological roles in the tundra, including in decomposition and trophic interactions.  相似文献   

14.
Many arid and semi‐arid landscapes around the world are affected by a shift from grassland to shrubland vegetation, presumably induced by climate warming, increasing atmospheric CO2 concentrations, and/or changing land use. This major change in vegetation cover is likely sustained by positive feedbacks with the physical environment. Recent research has focused on a feedback with microclimate, whereby cold intolerant shrubs increase the minimum nocturnal temperatures in their surroundings. Despite the rich literature on the impact of land cover change on local climate conditions, changes in microclimate resulting from shrub expansion into desert grasslands have remained poorly investigated. It is unclear to what extent such a feedback can affect the maximum extent of shrub expansion and the configuration of a stable encroachment front. Here, we focus on the case of the northern Chihuahuan desert, where creosotebush (Larrea tridentata) has been replacing grasslands over the past 100–150 years. We use a process‐based coupled atmosphere‐vegetation model to investigate the role of this feedback in sustaining shrub encroachment in the region. Simulations indicate that the feedback allows juvenile shrubs to establish in the grassland during average years and, once established, reduce their vulnerability to freeze‐induced mortality by creating a warmer microclimate. Such a feedback is crucial in extreme cold winters as it may reduce shrub mortality. We identify the existence of a critical zone in the surroundings of the encroachment front, in which vegetation dynamics are bistable: in this zone, vegetation can be stable both as grassland and as shrubland. The existence of these alternative stable states explains why in most cases the shift from grass to shrub cover is found to be abrupt and often difficult to revert.  相似文献   

15.
The circumpolar expansion of woody deciduous shrubs in arctic tundra alters key ecosystem properties including carbon balance and hydrology. However, landscape‐scale patterns and drivers of shrub expansion remain poorly understood, inhibiting accurate incorporation of shrub effects into climate models. Here, we use dendroecology to elucidate the role of soil moisture in modifying the relationship between climate and growth for a dominant deciduous shrub, Salix pulchra, on the North Slope of Alaska, USA. We improve upon previous modeling approaches by using ecological theory to guide model selection for the relationship between climate and shrub growth. Finally, we present novel dendroecology‐based estimates of shrub biomass change under a future climate regime, made possible by recently developed shrub allometry models. We find that S. pulchra growth has responded positively to mean June temperature over the past 2.5 decades at both a dry upland tundra site and an adjacent mesic riparian site. For the upland site, including a negative second‐order term in the climate–growth model significantly improved explanatory power, matching theoretical predictions of diminishing growth returns to increasing temperature. A first‐order linear model fit best at the riparian site, indicating consistent growth increases in response to sustained warming, possibly due to lack of temperature‐induced moisture limitation in mesic habitats. These contrasting results indicate that S. pulchra in mesic habitats may respond positively to a wider range of temperature increase than S. pulchra in dry habitats. Lastly, we estimate that a 2°C increase in current mean June temperature will yield a 19% increase in aboveground S. pulchra biomass at the upland site and a 36% increase at the riparian site. Our method of biomass estimation provides an important link toward incorporating dendroecology data into coupled vegetation and climate models.  相似文献   

16.
Question: How does willow‐characterised tundra vegetation of western Eurasia vary, and what are the main vegetation types? What are the ecological gradients and climatic regimes underlying vegetation differentiation? Location: The dataset was collected across a wide spectrum of tundra habitats at 12 sites in subarctic and arctic areas spanning from NW Fennoscandia to West Siberia. Methods: The dataset, including 758 vegetation sample plots (relevés), was analysed using a TWINSPAN classification and NMDS ordination that also included analyses of vegetation‐environment correlations. Results: Based on the TWINSPAN classification, eight vegetation types characterised by willow (cover of upright willows >10%) were discerned: (1) Salix glaucaCarex aquatilis type, (2) AulacomniumTomentypnum type, (3) SalixBetulaHylocomium type, (4) Salix lanataBrachythecium mildeanum type, (5) SalixPachypleurum type, (6) S. lanataMyosotis nemorosa type, (7) Salix‐Trollius‐Geranium type and (8) SalixComarum palustreFilipendula ulmaria type. Willow‐characterised vegetation types were compositionally differentiated from other tundra vegetation and were confined to relatively moist valley and sloping tundra sites, from mire to mineral soils. These vegetation types were encountered across a broad latitudinal zone in which July mean temperature ranged from 6 to 10°C. Conclusions: Willow‐characterised tundra vegetation forms a broad category of ecologically and geographically differentiated vegetation types that are linked to dwarf shrub tundra, shrub tundra or mire. Because of complex ecological gradients underlying compositional differentiation, predicting the responses of willow‐characterised tundra vegetation to a warming climate may be complicated.  相似文献   

17.
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air‐photo studies have documented recent changes in high‐latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24‐year (1986–2010) Landsat time series in a latitudinal transect across the boreal forest‐tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last 40 years. Using a per‐pixel (30 m) trend analysis, 30% of the observable (cloud‐free) land area experienced a significant (P < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak‐summer conditions. The average NDVI trend (0.007 yr?1) corresponds to a leaf‐area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer. Across the entire transect, the area‐averaged LAI increase was ~0.2 during 1986–2010. A higher area‐averaged LAI change (~0.3) within the shrub‐tundra portion of the transect represents a 20–60% relative increase in LAI during the last two decades. Our Landsat‐based analysis subdivides the overall high‐latitude greening trend into changes in peak‐summer greenness by cover type. Different responses within and among shrub, graminoid, and tree‐dominated cover types in this study indicate important fine‐scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low‐biomass vegetation types over multi‐decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.  相似文献   

18.
The evidence for shrub expansion in Northern Alaska and the Pan-Arctic   总被引:10,自引:0,他引:10  
One expected response to climate warming in the Arctic is an increase in the abundance and extent of shrubs in tundra areas. Repeat photography shows that there has been an increase in shrub cover over the past 50 years in northern Alaska. Using 202 pairs of old and new oblique aerial photographs, we have found that across this region spanning 620 km east to west and 350 km north to south, alder, willow, and dwarf birch have been increasing, with the change most easily detected on hill slopes and valley bottoms. Plot and remote sensing studies from the same region using the normalized difference vegetation index are consistent with the photographic results and indicate that the smaller shrubs between valleys are also increasing. In Canada, Scandinavia, and parts of Russia, there is both plot and remote sensing evidence for shrub expansion. Combined with the Alaskan results, the evidence suggests that a pan-Arctic vegetation transition is underway. If continued, this transition will alter the fundamental architecture and function of this ecosystem with important ramifications for the climate, the biota, and humans.  相似文献   

19.
Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate‐induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long‐term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil‐plant C‐N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.  相似文献   

20.
Question: We studied the interactive effects of grazing and dwarf shrub cover on the structure of a highly diverse annual plant community. Location: Mediterranean, semi‐arid shrubland in the Northern Negev desert, Israel. Methods: Variation in the biomass and plant density of annual species in the shrub and open patches was monitored during four years, inside and outside exclosures protected from sheep grazing, in two contrasting topographic sites: north and south‐facing slopes that differed in their dominant dwarf shrubs species: Sarcopoterium spinosus and Corydothymus capitatus, respectively. Results: Above‐ground biomass, density and richness of annual species were lower under the canopy of both shrub species compared to the adjacent open patches in the absence of grazing. Grazing reduced the biomass of annuals in open patches of both topographic sites, but not in the shrub patches. On the north‐facing slope, grazing also reduced plant density and richness in the open patches, but increased plant density in the shrub patches. At the species level, various response patterns to the combined effects of grazing and patch type were exhibited by different annuals. Protection against the direct impacts of grazing by shrub cover as well as species‐specific interactions between shrubs and annuals were observed. A conceptual mechanistic model explaining these interactions is proposed. Conclusion: In semi‐arid Mediterranean shrublands grazing and dwarf shrub cover interact in shaping the structure of the annual plant community through (1) direct impacts of grazing restricted to the open patches, (2) species‐specific facilitation/ interference occurring in the shrub patches and (3) subsequent further processes occurring among the interconnected shrub and open patches mediated through variation in seed flows between patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号