首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual phenotypic differences are increasingly recognized as key drivers of ecological processes. However, studies examining the relative importance of these differences in comparison with environmental factors or how individual phenotype interacts across different environmental contexts remain lacking. We performed two field experiments to assess the concurrent roles of personality differences and habitat quality in mediating individual mortality and dispersal. We quantified the predator avoidance response of mud crabs, Panopeus herbstii, collected from low‐ and high‐quality oyster reefs and measured crab loss in a caging experiment. We simultaneously measured the distance crabs traveled as well as the stability of personalities across reef quality in a separate reciprocal transplant experiment. Habitat quality was the primary determinant of crab loss, although the distance crabs traveled was governed by personality which interacted with habitat quality to control the fate of crabs. Here, crabs on low‐quality reefs rapidly emigrated, starting with the boldest individuals, and experienced modest levels of predation regardless of personality. In contrast, both bold and shy crabs would remain on high‐quality reefs for months where bolder individuals experienced higher predation risk. These findings suggest that personalities could produce vastly different population dynamics across habitat quality and govern community responses to habitat degradation.  相似文献   

2.
Eastern oyster (Crassostrea virginica) habitat is increasingly being restored for the ecosystem services it provides rather than solely as a fishery resource. Community‐based projects with the goal of ecological restoration have successfully constructed oyster reefs; however, the habitat benefits of these restoration efforts are usually not assessed or reported. In this study, we examined oyster habitat development at five community‐based oyster restoration sites in South Carolina using oyster population parameters, resident fauna densities, and sedimentation (percent sediment coverage) as assessment metrics. All sites included multiple‐aged reefs (1–3 years old) at the time of the fall 2004 sampling. Resident crabs and mussels were abundant at all five sites and crab assemblages were related to the size structure of the oyster microhabitat. Scorched mussel (Brachidontes exustus) abundances were most frequently correlated with oyster and other resident species abundances. Associations among oysters and resident crabs and mussels were not evident when analyses were conducted with higher level taxonomic groupings (e.g., total number of crabs, mussels, or oysters), indicating that species‐level identifications improve our understanding of interactions among reef inhabitants and oyster populations. Community‐based restoration sites in South Carolina provide habitat for mussels and resident crabs, in some cases in the absence of dense populations of relatively large oysters. Monitoring programs that neglect species‐level identifications and counts of mussels and crabs may underestimate the successful habitat provision that can arise independent of large, dense oyster assemblages.  相似文献   

3.
Incorporating connectivity into the design of marine protected areas (MPAs) has met with conceptual, theoretical, and practical challenges, which include: 1) the need to consider connectivity for multiple species with different dispersal abilities, and 2) the role played by variable habitat quality in determining the spatial patterns of connectivity. We propose an innovative approach, combining biophysical modeling with a routinely‐used tool for marine‐reserve design (Marxan), to address both challenges by using ecologically‐informed connectivity parameters. We showed how functional demographic connectivity for four candidate reef‐associated species with varying dispersal abilities and a suite of connectivity metrics weighted by habitat quality can be used to set conservation objectives and inform MPA placement. Overall, the strength of dispersal barriers varied across modeled species and, also across species, we found a lack of spatial concordance of reefs that were high‐quality sources, self‐persistent, and stepping‐stones. Including spatially‐heterogeneous habitat quality made a considerable difference to connectivity patterns, significantly reducing the potential reproductive output from many reefs. We also found that caution is needed in combining connectivity data from modeled species into multi‐species matrices, which do not perform reliably as surrogates for all connectivity metrics of individual species. We then showed that restricting the habitat available for conservation has an inequitable impact on different connectivity objectives and species, with greatest impact on betweenness centrality and long‐distance dispersers. We used Brazilian coral reefs as a case study but our approach is applicable to both marine and terrestrial conservation planning, and offers a holistic way to design functionally‐connected reserves to tackle the complex issues relevant to planning for persistence.  相似文献   

4.
The conservation of any species requires understanding and predicting the distribution of its habitat and resource use, including the effects of scale‐dependent variation in habitat and resource quality. Consequently, testing for resource selection at the appropriate scales is critical. We investigated how the resource selection process varies across scales, using koalas in a semi‐arid landscape of eastern Australia as a case study. We asked: at what scales does tree selection by koalas vary across regions? We tested the importance of the variation of our ecological predictors at the following scales: (i) the site‐scale (a stand of trees representing an individual koala's perception of local habitat); (ii) the landscape‐scale (10 × 10 km area representing a space within which a population of koalas exists); and (iii) a combination of these scales. We used a mixed‐modelling approach to quantify variation in selection of individual trees by koalas among sites and landscapes within a 1600 km2 study area. We found that tree species, and tree height, were the most important factors influencing tree selection, and that their effect did not vary across scales. In contrast, preferences for trees of different condition, which is the state of tree canopy health, did vary across landscapes, indicating spatial variation in the selection of trees with respect to tree condition at the landscape‐scale, but not at the site‐scale. We conclude that resource selection processes can depend on the quality of those resources at different scales and their heterogeneous nature across landscapes, highlighting the consequence of scale‐dependent ecological processes. Designing studies that capture the heterogeneity in habitat and resources used by species that have an extensive distribution is an important prerequisite for effective conservation planning and management.  相似文献   

5.
Habitat fragmentation is a complex process that affects ecological systems in diverse ways, altering everything from population persistence to ecosystem function. Despite widespread recognition that habitat fragmentation can influence food web interactions, consensus on the factors underlying variation in the impacts of fragmentation across systems remains elusive. In this study, we conduct a systematic review and meta‐analysis to quantify the effects of habitat fragmentation and spatial habitat structure on resource consumption in terrestrial arthropod food webs. Across 419 studies, we found a negative overall effect of fragmentation on resource consumption. Variation in effect size was extensive but predictable. Specifically, resource consumption was reduced on small, isolated habitat fragments, higher at patch edges, and neutral with respect to landscape‐scale spatial variables. In general, resource consumption increased in fragmented settings for habitat generalist consumers but decreased for specialist consumers. Our study demonstrates widespread disruption of trophic interactions in fragmented habitats and describes variation among studies that is largely predictable based on the ecological traits of the interacting species. We highlight future prospects for understanding how changes in spatial habitat structure may influence trophic modules and food webs.  相似文献   

6.
Assessing variation in breeding performance in relation to habitat characteristics may provide insights into predicting the consequences of land‐use change on species ecology and population dynamics. We compared four Marsh Harrier Circus aeruginosus populations subject to similar environmental conditions, but which differed in habitat composition, ranging from natural habitats to intensively cultivated areas. Using a 6‐year dataset, we characterized breeding habitat and diet in these four study sites, and analysed breeding performance in relation to this gradient of land‐use intensification. There was minimal variation in breeding performance between study years but consistent variation between study sites. Unexpectedly, Marsh Harriers breeding in intensively cultivated habitats had higher reproductive success than those breeding in more natural habitats, which, however, hosted higher breeding densities, so overall net population productivity (fledglings per unit area) was similar across sites. This resulted from combined effects of density‐dependence and different predation rates between study sites. The colonization of intensive farmland habitats may not necessarily impact negatively on population sustainability when breeding success and population density are traded against each other. However, our findings should not mask longer‐term conservation issues for populations breeding in these intensively managed areas, and further studies should assess potential long‐term negative effects of occupancy of human‐altered habitat.  相似文献   

7.
An animal's choice of foraging habitat reflects its response to environmental cues and is likely to vary among individuals in a population. Analyzing the magnitude of individual habitat selection can indicate how resilient populations may be to anthropogenic habitat change, where individually varying, broadly generalist populations have the potential to adjust their behavior. We collected GPS point data from 39 European nightjars (Caprimulgus europaeus) at a UK breeding site where restoration measures have altered large areas of habitat between breeding seasons. We calculated individual habitat selection over four breeding seasons to observe changes that might align with change in habitat. We also analyzed change in home range size in line with change in habitat availability, to examine functional relationships that can represent trade‐offs made by the birds related to performance of the habitat. Individual explained more of the variation in population habitat selection than year for most habitat types. Individuals differed in the magnitude of their selection for different habitat types, which created a generalist population composed of both generalist and specialist individuals. Selection also changed over time but only significantly for scrub habitat (60% decrease in selection over 4 years). Across the population, individual home range size was 2% smaller where availability of cleared habitat within the home range was greater, but size increased by 2% where the amount of open water was higher, indicating the presence of trade‐offs related to habitat availability. These results highlight that using individual resource selection and specialization measures, in conjunction with functional responses to change, can lead to better understanding of the needs of a population. Pooling specialist and generalist individuals for analysis could hide divergent responses to change and consequently obscure information that could be important in developing effective conservation strategies.  相似文献   

8.
Assessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m?2). We examined the impact of these differences in social context on personality by quantifying the boldness of the same individual crabs when in isolation and in natural cohorts. Crabs were also exposed to either a treatment of predator cues or a control of no cue throughout the experiment to assess the strength of this behavioral reaction norm. Crabs were significantly bolder when in groups than as solitary individuals with predator cue treatments exhibiting severally reduced crab activity levels in comparison to corresponding treatments with no predator cues. Behavioral plasticity depended on the individual and was strongest in the presence of predator cues. While bold crabs largely maintained their personality in isolation and group settings, shy crabs would become substantially bolder when among conspecifics. These results imply that the shifts in crab boldness were a response to changes in perceived predation risk, and provide a mechanism for explaining variation in behavioral plasticity. Such findings suggest that habitat degradation may produce subpopulations with different behavioral patterns because of differing social interactions between individual animals.  相似文献   

9.
While both predator body size and prey refuge provided by habitat structure have been established as major factors influencing the functional response (per capita consumption rate as a function of prey density), potential interactions between these factors have rarely been explored. Using a crab predator (Panopeus herbstii) – mussel prey (Brachidontes exustus) system, we examined the allometric scaling of the functional response in oyster (Crassostrea virginica) reef habitat, where crevices within oyster clusters provide mussels refuge from predation. A field survey of mussel distribution showed that mussels attach closer to the cluster periphery at high mussel density, indicating the potential for saturation of the refuge. In functional response experiments, the consumption rate of large crabs was depressed at low prey density relative to small crabs, while at high prey density the reverse was true. Specifically, the attack rate coefficient and handling time both decreased non‐linearly with crab size. An additional manipulation revealed that at low prey densities, the ability of large crabs to maneuver their claws and bodies to extract mussels from crevices was inhibited relative to small crabs by the structured habitat, reducing their attack rate. At high prey densities, crevices were saturated, forcing mussels to the edge of clusters where crabs were only limited by handling time. Our study illuminates a potentially general mechanism where the quality of the prey refuge provided by habitat structure is dependent on the relative size of the predator. Thus anthropogenic influences that alter the natural crab size distribution or degrade reef habitat structure could threaten the long‐term stability of the crab –mussel interaction in reefs.  相似文献   

10.
Evaluating habitat suitability is often complex, as habitat effects may be scale‐dependent, critical resources may be spatially segregated, and resource availability may also depend on intra‐ and inter‐specific interactions. Using analyses that spanned multiple years and spatial scales, we investigated habitat requirements of a territorial generalist, the common raven Corvus corax, in a relatively pristine woodland, Bia?owie?a Forest (E Poland). We compiled data from multiple raven surveys conducted between 1985 and 2001. Ravens were regularly distributed over the entire study area but declined in density over 50% within the 16 yr interval. In the same period game and forest management significantly reduced ungulate densities and likely diminished the habitat quality with regard to food supply, especially carrion. To better understand habitat requirements of ravens we studied breeding performance in relation to three different habitat types across multiple scales: open areas, coniferous‐dominated forest, and deciduous‐dominated forest. We found a prominent dissimilarity between raven nesting and foraging habitats highlighting the importance of resource complementation for ravens. On a fine scale, large old pines were exclusively selected as nesting trees and nesting areas were generally coniferous‐dominated. However, at increasingly broader scales, coniferous habitats were negatively associated with raven reproductive success as those habitats likely provide a lower food supply. Only where the coniferous nesting areas at smaller scales were complemented with high percentages of deciduous forests and open areas at broader scales did the breeding performance increase. In addition to habitat composition, intra‐specific interactions were important determinants of reproductive performance and very successful neighbors decreased reproductive performance of a focal pair. Most of previous studies have investigated resource complementation in terms of habitat edges or proximity of complementing resource patches. Our study demonstrates that the concept of landscape complementation also applies to gradients in landscape composition and emphasizes the importance of scales and intraspecific interactions in habitat analyses.  相似文献   

11.
Parasite alteration of the host (predator) functional response provides a mechanism by which parasites can alter predator–prey population dynamics and stability. We tested the hypothesis that parasitic infection of a crab (Eurypanopeus depressus) by a rhizocephalan barnacle (Loxothylacus panopei) can modify the crab’s functional response to mussel (Brachidontes exustus) prey and investigated behavioral mechanisms behind a potential change in the response. Infection dramatically reduced mussel consumption by crabs across mussel densities, resulting in a decreased attack rate parameter and a nearly eightfold reduction in maximum consumption (i.e. the asymptote, or inverse of the handling time parameter) in a type II functional response model. To test whether increased handling time of infected crabs drove the decrease in maximum consumption rate, we independently measured handling time through observation. Infection had no effect on handling time and thus could not explain the reduction in consumption. Infection did, however, increase the time that it took crabs to begin handling prey after the start of the handling time experiment. Furthermore, crabs harboring relatively larger parasites remained inactive longer before making contact with prey. This behavioral modification likely contributed to the reduced mussel consumption of infected crabs. A field survey revealed that 20 % of crabs inhabiting oyster reefs at the study site (North Inlet estuary, Georgetown, South Carolina, USA) are infected by the barnacle parasite, indicating that parasite infection could have a substantial effect on the population level crab-mussel interaction.  相似文献   

12.
  • The effects of habitat fragmentation on plant populations are complex, as it might disrupt many ecological processes, including plant reproduction and plant–animal interactions. Gypsum specialist plants may be resilient to fragmentation due to their evolutionary history in fragmented landscapes, but the effects on non‐specialist plants occurring in gypsum are unknown.
  • We conducted a study focusing on different aspects of the reproductive cycle of Astragalus incanus subsp. incanus, a plant facultatively linked to gypsum soils. We focused on plant fecundity and pre‐dispersal predation, obtained from field observations, and offspring performance, assessed in a common garden. Beyond fragment size and connectivity, we also considered habitat quality, population size and density and plant size as predictors.
  • Fragment size and connectivity had no effect on plant fecundity, but jointly determined fruit predation, while fragment size was positively related to offspring growth. Population density, rather than population size, had a positive effect on predation but negatively affected plant fecundity and offspring performance. Habitat quality reduced both plant fecundity and predation incidence.
  • In this non‐specialist species, habitat fragmentation, population features and habitat quality affect different facets of plant performance. Predation was the only process clearly affected by fragmentation variables, fecundity mainly depended on population features and offspring performance and was better explained by mother plant identity. Our results show the need to consider habitat and population features together with fragment size and connectivity in order to assess the effects of fragmentation. Importantly, these effects can involve different aspects of plant reproduction, including plant–animal interactions.
  相似文献   

13.
Land use is likely to be a key driver of population dynamics of species inhabiting anthropogenic landscapes, such as farmlands. Understanding the relationships between land use and variation in population growth rates is therefore critical for the management of many farmland species. Using 24 years of data of a declining farmland bird in an integrated population model, we examined how spatiotemporal variation in land use (defined as habitats with “Short” and “Tall” ground vegetation during the breeding season) and habitat‐specific demographic parameters relates to variation in population growth taking into account individual movements between habitats. We also evaluated contributions to population growth using transient life table response experiments which gives information on contribution of past variation of parameters and real‐time elasticities which suggests future scenarios to change growth rates. LTRE analyses revealed a clear contribution of Short habitats to the annual variation in population growth rate that was mostly due to fledgling recruitment, whereas there was no evidence for a contribution of Tall habitats. Only 18% of the variation in population growth was explained by the modeled local demography, the remaining variation being explained by apparent immigration (i.e., the residual variation). We discuss potential biological and methodological reasons for high contributions of apparent immigration in open populations. In line with LTRE analysis, real‐time elasticity analysis revealed that demographic parameters linked to Short habitats had a stronger potential to influence population growth rate than those of Tall habitats. Most particularly, an increase of the proportion of Short sites occupied by Old breeders could have a distinct positive impact on population growth. High‐quality Short habitats such as grazed pastures have been declining in southern Sweden. Converting low‐quality to high‐quality habitats could therefore change the present negative population trend of this, and other species with similar habitat requirements.  相似文献   

14.
Rapid anthropogenic habitat changes can lead to non‐ideal habitat use by animals, often resulting in lower fitness and population declines. An extreme case of use and fitness mismatch is an ecological trap where habitat quality cues are disjointed from the true quality of the habitat. Species primarily associated with anthropogenically altered habitat, such as red‐headed woodpeckers (Melanerpes erythrocephalus), may be especially vulnerable to use and fitness mismatch as they encounter novel environmental challenges. We investigated multi‐scale habitat use and nesting success of red‐headed woodpeckers to assess their vulnerability to mismatches between use and fitness as a result of non‐ideal habitat use across multiple scales. We found that habitat characteristics that promote feeding potential such as canopy openness and greater dead limb length appeared paramount and were consistent in use across several spatial scales although reproductive fitness suffered. This contrasts with the assumption that habitat use by nesting birds should instead favor predation avoidance at smaller scales to improve reproductive fitness and suggests that maladaptive, food‐based habitat use by red‐headed woodpeckers in southern Ontario may result in ecological traps for the species. Whether due to poor habitat choices or costly ones in favor of feeding potential, it is vital to consider this behavior in conservation and management plans for this and similar species. We suggest multi‐scale habitat use studies that consider fitness outcomes are critical for species‐at‐risk in human‐modified landscapes.  相似文献   

15.
The difficulties in understanding the underlying reasons of a population decline lie in the typical short duration of field studies, the often too small size already reached by a declining population or the multitude of environmental factors that may influence population trend. In this difficult context, useful demographic tools such as integrated population models (IPM) may help disentangling the main reasons for a population decline. To understand why a hoopoe Upupa epops population has declined, we followed a three step model analysis. We built an IPM structured with respect to habitat quality (approximated by the expected availability of mole crickets, the main prey in our population) and estimated the contributions of habitat‐specific demographic rates to population variation and decline. We quantified how much each demographic rate has decreased and investigated whether habitat quality influenced this decline. We tested how much weather conditions and research activities contributed to the decrease in the different demographic rates. The decline of the hoopoe population was mainly explained by a decrease in first‐year apparent survival and a reduced number of fledglings produced, particularly in habitats of high quality. Since a majority of pairs bred in habitats of the highest quality, the decrease in the production of locally recruited yearlings in high‐quality habitat was the main driver of the population decline despite a homogeneous drop of recruitment across habitats. Overall, the explanatory variables we tested only accounted for 19% of the decrease in the population growth rate. Among these variables, the effects of spring temperature (49% of the explained variance) contributed more to population decline than spring precipitation (36%) and research activities (maternal capture delay, 15%). This study shows the power of IPMs for identifying the vital rates involved in population declines and thus paves the way for targeted conservation and management actions.  相似文献   

16.
Population extinction is a fundamental ecological process which may be aggravated by the exchange of organisms between productive (source) and unproductive (sink) habitat patches. The extent to which such source‐sink exchange affects extinction rates is unknown. We conducted an experiment in which metapopulation effects could be distinguished from source‐sink effects in laboratory populations of Daphnia magna. Time‐to‐extinction in this experiment was maximized at intermediate levels of habitat fragmentation, which is consistent with a minority of theoretical models. These results provided a baseline for comparison with experimental treatments designed to detect effects of concentrating resources in source patches. These treatments showed that source‐sink configurations increased population variability (the coefficient of variation in abundance) and extinction hazard compared with homogeneous environments. These results suggest that where environments are spatially heterogeneous, accurate assessments of extinction risk will require understanding the exchange of organisms among population sources and sinks. Such heterogeneity may be the norm rather than the exception because of both the intrinsic heterogeneity naturally exhibited by ecosystems and increasing habitat fragmentation by human activity.  相似文献   

17.
Climate change and land‐use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land‐use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual‐based model to explore the effects of land‐use change and climate change on a population of the endangered Red‐cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land‐use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate‐driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ‐GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land‐use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor‐quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side.  相似文献   

18.
For many species securing territories is important for feeding and reproduction. Factors such as competition, habitat availability, and male characteristics can influence an individual’s ability to establish and maintain a territory. The risk of predation can have an important influence on feeding and reproduction; however, few have studied its effect on territoriality. We investigated territoriality in a haremic, polygynous species of coral reef herbivore, Sparisoma aurofrenatum (redband parrotfish), across eight reefs in the Florida Keys National Marine Sanctuary that were either protected or unprotected from fishing of piscivorous fishes. We examined how territory size and quality varied with reef protection status, competition, predation risk, and male size. We then determined how territory size and quality influenced harem size and female size to understand the effect of territoriality on reproductive potential. We found that protected reefs trended towards having more large predatory fishes and that territories there were smaller but had greater algal nutritional quality relative to unprotected reefs. Our data suggest that even though males in protected sites have smaller territories, which support fewer females, they may improve their reproductive potential by choosing nutritionally rich areas, which support larger females. Thus, reef protection appears to shape the trade-off that herbivorous fishes make between territory size and quality. Furthermore, we provide evidence that males in unprotected sites, which are generally less complex than protected sites, choose territories with higher structural complexity, suggesting the importance of this type of habitat for feeding and reproduction in S. aurofrenatum. Our work argues that the loss of corals and the resulting decline in structural complexity, as well as management efforts to protect reefs, could alter the territory dynamics and reproductive potential of important herbivorous fish species.  相似文献   

19.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages.  相似文献   

20.
The role of habitat‐providing species in facilitating associated species abundance and diversity is recognized as a key structuring force in many ecosystems. Reciprocal facilitation by associates, often involving multiple species, can be important for the maintenance of the host species. As with other multi‐species interactions (e.g. multiple predator effects), non‐additive relationships may be common among these associates, yet relatively few studies have examined potential interactions among multiple facilitator species. We combined field surveys and a mesocosm experiment to examine the independent and interactive effects of two co‐occurring facilitator species, ribbed mussels Geukensia demissa and fiddler crabs Uca pugilator, on their host salt marsh plant species, cordgrass Spartina alterniflora. We also experimentally examined how these relationships varied across different host plant genotypes. Overall, facilitator effects increased with increasing facilitator density. There was a significant interaction between mussel and fiddler crab presence, indicating that the effects of each species on cordgrass were dependent on the presence of the other facilitator species. In addition, there were strong interactions among mussels, fiddler crabs, and plant genotype, with greater variation in the performance of individual genotypes when fiddler crabs were absent. Our work reinforces the importance of considering multiple responses when assessing the functional redundancy of co‐occurring facilitators, as species are seldom completely redundant across the range of services they provide. It also highlights that the strength and direction of species interactions can vary due to genetic variation within the interacting species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号