首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple regionally distant areas. Migrant populations of Helicoverpa zea (Boddie) captured during two different seasons were assessed for genetic structure using microsatellite markers and for host plant type using stable carbon isotope analysis. Individuals (N = 568) were genotyped and divided into 13 putative populations based on collection site and time. Fixation indices (F‐statistics), analysis of molecular variance (AMOVA), and discriminant analysis of principal components (DAPC) were used to examine within and among population genetic variation. Mean number of alleles per locus was 10.25 (± 3.2 SD), and allelic richness ranged from 2.38 to 5.13 (± 3.2 SD). The observed and expected heterozygosity ranged from 0.07 to 0.48 and 0.08 to 0.62, respectively. Low FST (0.01 to 0.02) and high FIS (0.08 to 0.33) values suggest captured migrants originated from breeding populations with different allele frequencies. We postulate that high genetic diversity within migrant populations and low genetic differentiation among migrant populations of H. zea are the result of asymmetrical immigration due to the high dispersal and reproductive behavior of H. zea, which may hinder the adaptation and establishment of H. zea to peripheral habitat. These findings highlight the importance of assessing peripheral population structure in relation to ecological and evolutionary dynamics of this and other highly reproductive and dispersive species.  相似文献   

2.
Deep‐sea hydrothermal vents and cold seeps, limited environments without sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce population heterogeneity. However, information on such chemosynthetic fauna taxa is rare, especially regarding the population diversity of species inhabiting both vents and cold seeps. In this study, three mitochondrial DNA fragments (the cytochrome c oxidase submit I (COI), cytochrome b gene (Cytb), and 16S) were concatenated as a mitochondrial concatenated dataset (MCD) to examine the genetic diversity, population structure, and demographic history of Shinkaia crosnieri and Bathymodiolus platifrons. The genetic diversity differences between vent and seep populations were statistically significant for S. crosnieri but not for B. platifrons. S. crosnieri showed less gene flow and higher levels of genetic differentiation between the vent and seep populations than B. platifrons. In addition, the results suggest that all the B. platifrons populations, but only the S. crosnieri vent populations, passed through a recent expansion or bottleneck. Therefore, different population distribution patterns for the two dominant species were detected; a pattern of population differentiation for S. crosnieri and a homogeneity pattern for B. platifrons. These different population distribution patterns were related to both extrinsic restrictive factors and intrinsic factors. Based on the fact that the two species were collected in almost identical or adjacent sampling sites, we speculated that the primary factors underlying the differences in the population distribution patterns were intrinsic. The historical demographics, dispersal ability, and the tolerance level of environmental heterogeneity are most likely responsible for the different distribution patterns.  相似文献   

3.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.  相似文献   

4.
The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences. Here, we describe the range‐wide population genetic structure of an ecologically important Caribbean octocoral, Gorgonia ventalina. Genetic differentiation was positively correlated with geographic distance and negatively correlated with oceanographically modelled dispersal probability throughout the range. Although we observed admixture across hundreds of kilometres, estimated dispersal was low, and populations were differentiated across distances <2 km. These results suggest that populations of G. ventalina may be evolutionarily coupled via gene flow but are largely demographically independent. Observed patterns of differentiation corroborate biogeographic breaks found in other taxa (e.g. an east/west divide near Puerto Rico), and also identify population divides not discussed in previous studies (e.g. the Yucatan Channel). High genotypic diversity and absence of clonemates indicate that sex is the primary reproductive mode for G. ventalina. A comparative analysis of the population structure of G. ventalina and its dinoflagellate symbiont, Symbiodinium, indicates that the dispersal of these symbiotic partners is not coupled, and symbiont transmission occurs horizontally.  相似文献   

5.
In the past decade, the study of dispersal of marine organisms has shifted from focusing predominantly on the larval stage to a recent interest in adult movement. Antitropical distributions provide a unique system to assess vagility and dispersal. In this study, we have focused on an antitropical wrasse genus, Semicossyphus, which includes the California sheephead, S. pulcher, and Darwin's sheephead, S. darwini. Using a phylogenetic approach based on mitochondrial and nuclear markers, and a population genetic approach based on mitochondrial control region sequences and 10 microsatellite loci, we compared the phylogenetic relationships of these two species, as well as the population genetic characteristics within S. pulcher. While S. pulcher and S. darwini are found in the temperate eastern Pacific regions of the northern and southern hemispheres, respectively, their genetic divergence was very small (estimated to have occurred between 200 and 600 kya). Within S. pulcher, genetic structuring was generally weak, especially along mainland California, but showed weak differentiation between Sea of Cortez and California, and between mainland California and Channel Islands. We highlight the congruence of weak genetic differentiation both within and between species and discuss possible causes for maintenance of high gene flow. In particular, we argue that deep and cooler water refugia are used as stepping stones to connect distant populations, resulting in low levels of genetic differentiation.  相似文献   

6.
The sky islands of southeastern Arizona (AZ) mark a major transition zone between tropical and temperate biota and are considered a neglected biodiversity hotspot. Dispersal ability and host plant specificity are thought to impact the history and diversity of insect populations across the sky islands. We aimed to investigate the population structure and phylogeography of two pine‐feeding pierid butterflies, the pine white (Neophasia menapia) and the Mexican pine white (Neophasia terlooii), restricted to these “islands” at this transition zone. Given their dependence on pines as the larval hosts, we hypothesized that habitat connectivity affects population structure and is at least in part responsible for their allopatry. We sampled DNA from freshly collected butterflies from 17 sites in the sky islands and adjacent high‐elevation habitats and sequenced these samples using ddRADSeq. Up to 15,399 SNPs were discovered and analyzed in population genetic and phylogenetic contexts with Stacks and pyRAD pipelines. Low genetic differentiation in N. menapia suggests that it is panmictic. Conversely, there is strong evidence for population structure within N. terlooii. Each sky island likely contains a population of N. terlooii, and clustering is hierarchical, with populations on proximal mountains being more related to each other. The N. menapia habitat, which is largely contiguous, facilitates panmixia, while the N. terlooii habitat, restricted to the higher elevations on each sky island, creates distinct population structure. Phylogenetic results corroborate those from population genetic analyses. The historical climate‐driven fluxes in forest habitat connectivity have implications for understanding the biodiversity of fragmented habitats.  相似文献   

7.
Understanding the spatial scale of demographic connectivity in marine reef fishes dispersing pelagic larvae is a challenging task because of the technical difficulties associated with tagging and monitoring the movements of progeny at early life stages. Several studies highlighted a strong importance of local retention with levels of dispersal of ecological significance restricted to short distances. To date little information is available in species where pelagic dispersal lasts for long periods of time. In this work, population structure and connectivity were studied in the grey triggerfish, Balistes capriscus. Grey triggerfish larvae and juveniles remain associated with floating Sargassum sp. beds for an estimated period of 4–7 months before settling on benthic habitats where they remain sedentary as adults. Analysis of genetic variation among populations along the continental shelf of the northern Gulf of Mexico and U.S. east coast, encompassing over 3,100 km of coastline, revealed homogeneous allele frequencies and a weak isolation‐by‐distance pattern. Moment and maximum‐likelihood estimates of dispersal parameters both indicated occurrence of large neighbourhoods with estimates of the dispersal distribution parameter σ of 914 and 780 km, respectively. Simulated distributions of dispersal distances using several distribution functions all featured substantial fractions of long‐distance dispersal events with the 90% percentiles of travel distance prior to settlement averaging 1,809 km. These results suggest a high dependency of local recruitment on the output of nonlocal spawning stocks located hundreds of kilometres away and a reduced role of local retention in this species.  相似文献   

8.
New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria‐transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.  相似文献   

9.
Discrepancies between potential and observed dispersal distances of reef fish indicate the need for a better understanding of the influence of larval behaviour on recruitment and dispersal. Population genetic studies can provide insight on the degree to which populations are connected, and the development of restriction site‐associated sequencing (RAD‐Seq) methods has made such studies of nonmodel organisms more accessible. We applied double‐digest RAD‐Seq methods to test for population differentiation in the coral reef‐dwelling cardinalfish, Siphamia tubifer, which based on behavioural studies, have the potential to use navigational cues to return to natal reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from eleven locations over 3 years reveals little genetic differentiation between groups of S. tubifer at spatial scales from 2 to 140 km and between years at one location: pairwise FST values were between 0.0116 and 0.0214. These results suggest that the Kuroshio Current largely influences larval dispersal in the region, and in contrast to expectations based on studies of other cardinalfishes, there is no evidence of population structure for S. tubifer at the spatial scales examined. However, analyses of outlier loci putatively under selection reveal patterns of temporal differentiation that indicate high population turnover and variable larval supply from divergent source populations between years. These findings highlight the need for more studies of fishes across various geographic regions that also examine temporal patterns of genetic differentiation to better understand the potential connections between early life‐history traits and connectivity of reef fish populations.  相似文献   

10.
A proactive approach to conservation must be predictive, anticipating how habitats will change and which species are likely to decline or prosper. We use composite species distribution modelling to identify suitable habitats for 18 members of the North American Atlantic Coastal Plain Flora (ACPF) since the Last Glacial Maximum and project these into the future. We then use Scirpus longii (Cyperaceae), a globally imperiled ACPF sedge with many of the characteristics of extinction vulnerability, as a case study. We integrate phylogeographical and population genetic analyses and species distribution modelling to develop a broad view of its current condition and prognosis for conservation. We use genotyping‐by‐sequencing to characterize the genomes of 142 S. longii individuals from 20 populations distributed throughout its range (New Jersey to Nova Scotia). We measure the distribution of genetic diversity in the species and reconstruct its phylogeographical history using the snapp and rase models. Extant populations of S. longii originated from a single refugium south of the Laurentide ice sheet around 25 ka. The genetic diversity of S. longii is exceedingly low, populations exhibit little genetic structure and the species is slightly inbred. Projected climate scenarios indicate that nearly half of extant populations of S. longii will be exposed to unsuitable climate by 2070. Similar changes in suitable habitat will occur for many other northern ACPF species—centres of diversity will shift northward and Nova Scotia may become the last refuges for those species not extinguished.  相似文献   

11.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

12.
R. Rouger  A. S. Jump 《Molecular ecology》2014,23(13):3158-3170
Little is known about the processes shaping population structure in saltmarshes. It is expected that the sea should act as a powerful agent of dispersal. Yet, in contrast, import of external propagules into a saltmarsh is thought to be small. To determine the level of connectivity between saltmarsh ecosystems at a macro‐geographical scale, we characterized and compared the population structure of two polyploid saltmarsh species, Puccinellia maritima and Triglochin maritima based on a seascape genetics approach. A discriminant analysis of principal components highlighted a genetic structure for both species arranged according to a regional pattern. Subsequent analysis based on isolation‐by‐distance and isolation‐by‐resistance frameworks indicated a strong role of coastal sediment transport processes in delimiting regional structure in P. maritima, while additional overland propagule dispersal was indicated for T. maritima. The identification and comparison of regional genetic structure and likely determining factors presented here allows us to understand the biogeographical units along the UK coast, between which barriers to connectivity occur not only at the species level but at the ecosystem scale. This information is valuable in plant conservation and community ecology and in the management and restoration of saltmarsh ecosystems.  相似文献   

13.
Fine‐scale spatial genetic structure of populations results from social and spatial behaviors of individuals such as sex‐biased dispersal and philopatry. However, the demographic history of a given population can override such socio‐spatial factors in shaping genetic variability when bottlenecks or founder events occurred in the population. Here, we investigated whether socio‐spatial organization determines the fine‐scale genetic structure for both sexes in a Mediterranean mouflon (Ovis gmelini musimon × Ovis sp.) population in southern France 60 years after its introduction. Based on multilocus genotypes at 16 loci of microsatellite DNA (n = 230 individuals), we identified three genetic groups for females and two for males, and concurrently defined the same number of socio‐spatial units using both GPS‐collared individuals (n = 121) and visual resightings of marked individuals (n = 378). The socio‐spatial and genetic structures did not match, indicating that the former was not the main driver of the latter for both sexes. Beyond this structural mismatch, we found significant, yet low, genetic differentiation among female socio‐spatial groups, and no genetic differentiation in males, with this suggesting female philopatry and male‐biased gene flow, respectively. Despite spatial disconnection, females from the north of the study area were genetically closer to females from the south, as indicated by the spatial analysis of the genetic variability, and this pattern was in accordance with the common genetic origin of their founders. To conclude, more than 14 generations later, genetic signatures of first introduction are not only still detectable among females, but they also represent the main factor shaping their present‐time genetic structure.  相似文献   

14.
S. Jha 《Molecular ecology》2015,24(5):993-1006
Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human‐altered habitats. Yet, little is known about the role of natural and human‐altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow‐faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human‐altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (FST = 0.041, FST = 0.044 and Dest = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services.  相似文献   

15.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

16.
Social structure can have a significant impact on divergence and evolution within species, especially in the marine environment, which has few environmental boundaries to dispersal. On the other hand, genetic structure can affect social structure in many species, through an individual preference towards associating with relatives. One social species, the short‐finned pilot whale (Globicephala macrorhynchus), has been shown to live in stable social groups for periods of at least a decade. Using mitochondrial control sequences from 242 individuals and single nucleotide polymorphisms from 106 individuals, we examine population structure among geographic and social groups of short‐finned pilot whales in the Hawaiian Islands, and test for links between social and genetic structure. Our results show that there are at least two geographic populations in the Hawaiian Islands: a Main Hawaiian Islands (MHI) population and a Northwestern Hawaiian Islands/Pelagic population (FST and ΦST < .001), as well as an eastern MHI community and a western MHI community (FST = .009). We find genetically driven social structure, or high relatedness among social units and clusters (< .001), and a positive relationship between relatedness and association between individuals (< .0001). Further, socially organized clusters are genetically distinct, indicating that social structure drives genetic divergence within the population, likely through restricted mate selection (FST = .05). This genetic divergence among social groups can make the species less resilient to anthropogenic or ecological disturbance. Conservation of this species therefore depends on understanding links among social structure, genetic structure and ecological variability within the species.  相似文献   

17.
Land‐use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land‐use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine‐scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri‐environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01–0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri‐environment scheme conservation measures to facilitate fine‐scale gene flow by creating a more even distribution of suitable habitats across landscapes.  相似文献   

18.
Recent molecular studies have shown that highly mobile species with continuous distributions can exhibit fine‐scale population structure. In this context, we assessed genetic structure within a marine species with high dispersal potential, the Atlantic spotted dolphin (Stenella frontalis). Using 19 microsatellite loci and mitochondrial control region sequences, population structure was investigated in the western North Atlantic, the Gulf of Mexico and the Azores Islands. Analyses of the microsatellite data identified four distinct genetic clusters, which were supported by the control region sequences. The highest level of divergence was seen between two clusters corresponding to previously described morphotypes that inhabit oceanic and shelf waters. The combined morphological and genetic evidence suggests these two lineages are on distinct evolutionary trajectories and could be considered distinct subspecies despite their parapatry. Further analysis of the continental shelf cluster resulted in three groups: animals inhabiting shelf waters in the western North Atlantic, the eastern Gulf of Mexico and the western Gulf of Mexico. Analyses of environmental data indicate the four genetic clusters inhabit distinct habitats in terms of depth and sea surface temperature. Contemporary dispersal rate estimates suggest all of these populations should be considered as distinct management units. Conversely, no significant genetic differentiation was observed between S. frontalis from offshore waters of the western North Atlantic and the Azores, which are separated by approximately 4500 km. Overall, the hierarchical structure observed within the Atlantic spotted dolphin shows that the biogeography of the species is complex because it is not shaped solely by geographic distance.  相似文献   

19.
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat‐tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long‐distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin‐tailed kernels. Here, we use a well‐established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat‐tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore‐dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (, amova , IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.  相似文献   

20.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号