首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several ecological and genetic factors affect the diet specialization of insect herbivores. The evolution of specialization may be constrained by lack of genetic variation in herbivore performance on different food‐plant species. By traditional view, trade‐offs, that is, negative genetic correlations between the performance of the herbivores on different food‐plant species favour the evolution of specialization. To investigate whether there is genetic variation or trade‐offs in herbivore performance between different food plants that may influence specialization of the oligophagous seed‐eating herbivore, Lygaeus equestris (Heteroptera), we conducted a feeding trial in laboratory using four food‐plant species. Although L. equestris is specialized on Vincetoxicum hirundinaria (Apocynaceae) to some degree, it occasionally feeds on alternative food‐plant species. We did not find significant negative genetic correlations between mortality, developmental time and adult biomass of L. equestris on the different food‐plant species. We found genetic variation in mortality and developmental time of L. equestris on some of the food plants, but not in adult biomass. Our results suggest that trade‐offs do not affect adaptation and specialization of L. equestris to current and novel food‐plant species, but the lack of genetic variation may restrict food‐plant utilization. As food‐plant specialization of herbivores may have wide‐ranging effects, for instance, on coevolving plant–herbivore interactions and speciation, it is essential to thoroughly understand the factors behind the specialization process. Our findings provide valuable information about the role of genetic factors in food‐plant specialization of this oligophagous herbivore.  相似文献   

2.
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

3.
The extent to which black‐backed jackals (Canis mesomelas) selectively consume domestic sheep (Ovis aries) compared to wild prey is unknown. Using faecal analysis and prey surveys, we determined the seasonal diet and prey selection of jackals on a small‐livestock farm in South Africa. Sheep comprised 25–48% of the biomass consumed by jackals across seasons, and consumption peaked during the lambing seasons, indicating sheep often were the main food resource for jackals. Another main food resource was wild ungulates <50 kg, primarily springbok (Antidorcas marsupialis) and steenbok (Raphicerus campestris), which comprised 8–47% of the biomass consumed. Other important food items were mammals 1–3 kg (4–16%), which included hares (Lepus spp.) and springhares (Pedetes capensis), and small rodents (10–14%). Compared to the biomass available, jackals selectively consumed mammals 1–3 kg over sheep across all seasons, whereas wild ungulates <50 kg were selectively consumed over sheep in most seasons. Our results showed that jackals selectively consumed different food items throughout the year and that wild prey were consistently selected over sheep.  相似文献   

4.
5.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

6.
Although tropical forests have been rapidly converted into human‐modified landscapes, tree species response to forest edges remains poorly examined. In this study, we addressed four pioneer tree species to document demographic shifts experienced by this key ecological group and make inferences about pioneer response to forest edges. All individuals with dbh ≥ 1 cm of two short‐lived (Bellucia grossularioides and Cecropia sciadophylla) and two long‐lived species (Goupia glabra and Laetia procera) were sampled in 20 1‐ha forest edge plots and 20 1‐ha forest interior plots in Oiapoque and Manaus, Northeast and Central Amazon, respectively. As expected, pioneer stem density with dbh ≥ 1 cm increased by around 10–17‐fold along forest edges regardless of species, lifespan, and study site. Edge populations of long‐lived pioneers presented 84–94 percent of their individuals in sapling/subadult size classes, whereas edge populations of short‐lived pioneers showed 56–97 percent of their individuals in adult size classes. These demographic biases were associated with negative and positive net adult recruitment of long‐ and short‐lived pioneers, respectively. Our population‐level analyses support three general statements: (1) native pioneer tree species proliferate along forest edges (i.e., increased density), at least in terms of non‐reproductive individuals; (2) pioneer response to edge establishment is not homogeneous as species differ in terms of demographic structure and net adult recruitment; and (3) some pioneer species, particularly long‐lived ones, may experience population decline due to adult sensitivity to edge‐affected habitats.  相似文献   

7.
  • Knowledge on the metabolism of polysaccharide reserves in wild species is still scarce. In natural sites we collected tubers of Arum italicum Mill. and A. maculatum L. – two geophytes with different apparent phenological timing, ecology and chorology – during five stages of the annual cycle in order to understand patterns of reserve accumulation and degradation.
  • Both the entire tuber and its proximal and distal to shoot portion were utilised. Pools of non‐structural carbohydrates (glucose, sucrose and starch), glucose‐6‐phosphate and ATP were analysed as important markers of carbohydrate metabolism.
  • In both species, starch and glucose content of the whole tuber significantly increased from sprouting to the maturation/senescence stages, whereas sucrose showed an opposite trend; ATP and glucose‐6‐phosphate were almost stable and dropped only at the end of the annual cycle. Considering the two different portions of the tuber, both ATP and glucose‐6‐phosphate concentrations were higher in proximity to the shoot in all seasonal stages, except the flowering stage.
  • Our findings suggest that seasonal carbon partitioning in the underground organ is driven by phenology and occurs independently of seasonal climate conditions. Moreover, our results show that starch degradation, sustained by elevated ATP and glucose‐6‐phosphate pools, starts in the peripheral, proximal‐to‐shoot portion of the tuber, consuming starch accumulated in the previous season, as a ‘Last In–First Out’ mechanism of carbohydrate storage.
  相似文献   

8.
The strategies by which intracellular pathogenic bacteria manipulate innate immunity to establish chronicity are poorly understood. Here, we show that Brucella abortus outer membrane protein Omp25 specifically binds the immune cell receptor SLAMF1 in vitro. The Omp25‐dependent engagement of SLAMF1 by B. abortus limits NF‐κB translocation in dendritic cells (DCs) with no impact on Brucella intracellular trafficking and replication. This in turn decreases pro‐inflammatory cytokine secretion and impairs DC activation. The Omp25‐SLAMF1 axis also dampens the immune response without affecting bacterial replication in vivo during the acute phase of Brucella infection in a mouse model. In contrast, at the chronic stage of infection, the Omp25/SLAMF1 engagement is essential for Brucella persistence. Interaction of a specific bacterial protein with an immune cell receptor expressed on the DC surface at the acute stage of infection is thus a powerful mechanism to support microbe settling in its replicative niche and progression to chronicity.  相似文献   

9.
  1. Filter‐feeding zooplankton in lakes feed on a mixture of phytoplankton, bacteria, and terrestrial particles and the proportions and nutritional value of these components can be highly variable. However, the extent to which food quality interacts with food quantity in affecting overall zooplankton performance is not yet fully resolved.
  2. Here we performed laboratory feeding experiments to test how the performance of the unselective filter feeder Daphnia galeata was affected if various quantities of high‐quality food (the phytoplankton Rhodomonas) were diluted with low‐quality food such as heterotrophic bacteria (Pseudomonas) or terrestrial detritus particles (t‐POM) from the riparian zone of a boreal forest stream. We hypothesised: that increased proportions of bacteria and t‐POM in the diet will lead to decreased survival, somatic growth; and reproduction of Daphnia despite the presence of phytoplankton; that these effects are more pronounced for t‐POM than for heterotrophic bacteria; and that this response is stronger when phytoplankton availability is low.
  3. Increasing the concentrations of Pseudomonas affected Daphnia survival, growth, and reproduction negatively when Rhodomonas was available at intermediate (0.37 mgC/L) and high (0.55 mgC/L) quantities. When Rhodomonas quantity was low (0.22 mgC/L), the addition of Pseudomonas generally resulted in better Daphnia performance except at very high concentrations of the bacterium relative to Rhodomonas. In contrast, the addition of t‐POM was detrimental for overall Daphnia performance at all Rhodomonas concentrations.
  4. Daphnia performance was best described by a model including the interaction between food quality and quantity, with stronger negative effects on Daphnia when high‐quality food was supplemented with t‐POM than with Pseudomonas.
  5. The results indicate that the ability of zooplankton to use low‐quality food is affected by the concurrent availability of high‐quality food. Furthermore, food sources that can be used but do not fulfil dietary requirements of grazers (e.g. bacteria), may still provide nutritional benefits as long as other complementary food components are available in sufficient quantities to compensate for biochemical deficiencies.
  6. Therefore, we conclude that heterotrophic bacteria, but not peat layer t‐POM, can be an important component of zooplankton diets in boreal lakes, especially if the concentration of phytoplankton is low.
  相似文献   

10.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

11.
The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food‐borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade‐off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen‐induced damage.  相似文献   

12.
Tobacco leaf curl Japan virus, Honeysuckle yellow vein mosaic virus and Tomato yellow leaf curl virus are three begomoviruses that infect tomato crops in Japan. Tomato infection by begomoviruses has increased in Japan after the development of a high level of resistance to certain insecticides in some populations of the vector B. tabaci biotypes ‘B and Q’. Ty‐1 and Ty‐2 homozygous tomato hybrids were evaluated for reaction to monopartite begomovirus species in Japan by Agrobacterium‐mediated inoculation. Test plants were evaluated by a disease assessment scale (DAS), varying from 1 = no symptoms to 4 = severe symptoms, and systemic infection was evaluated by polymerase chain reaction (PCR), using specific begomovirus primers for each virus. Ty‐1 hybrids showed tolerance to HYVMV and with a large number of plants being neither virus‐free nor symptom‐free. The response of Ty‐1 hybrids was also resistant to moderately resistant against TbLCJV. The response of Ty‐2 hybrids was resistant to highly resistant against the three monopartite begomoviruses, when compared with susceptible plants.  相似文献   

13.
Cat fleas (Ctenocephalides felis) are known as the primary vector and reservoir of Rickettsia felis, the causative agent of flea‐borne spotted fever; however, field surveys regularly report molecular detection of this infectious agent from other blood‐feeding arthropods. The presence of R. felis in additional arthropods may be the result of chance consumption of an infectious bloodmeal, but isolation of viable rickettsiae circulating in the blood of suspected vertebrate reservoirs has not been demonstrated. Successful transmission of pathogens between actively blood‐feeding arthropods in the absence of a disseminated vertebrate infection has been verified, referred to as cofeeding transmission. Therefore, the principal route from systemically infected vertebrates to uninfected arthropods may not be applicable to the R. felis transmission cycle. Here, we show both intra‐ and interspecific transmission of R. felis between cofeeding arthropods on a vertebrate host. Analyses revealed that infected cat fleas transmitted R. felis to naïve cat fleas and rat fleas (Xenopsylla cheopis) via fleabite on a nonrickettsemic vertebrate host. Also, cat fleas infected by cofeeding were infectious to newly emerged uninfected cat fleas in an artificial system. Furthermore, we utilized a stochastic model to demonstrate that cofeeding is sufficient to explain the enzootic spread of R. felis amongst populations of the biological vector. Our results implicate cat fleas in the spread of R. felis amongst different vectors, and the demonstration of cofeeding transmission of R. felis through a vertebrate host represents a novel transmission paradigm for insect‐borne Rickettsia and furthers our understanding of this emerging rickettsiosis.  相似文献   

14.
15.
In this study, the protective effect of red light against the brown spot disease caused by the fungus Bipolaris oryzae in rice was investigated. Lesion formation was significantly inhibited on detached leaves that were inoculated with B. oryzae and kept under red for 48 h, but it was not inhibited when the leaves were kept under natural light or in the dark. The protective effect was also observed in intact rice plants inoculated with B. oryzae; the plants survived under red light, but most of them were killed by infection under natural light or dark condition. Red light did not affect fungal infection in onion epidermis cells or heat‐shocked leaves of rice, and it did not affect cellulose digestion ability; this suggested that the protective effect is due to red‐light‐induced resistance. In addition, the degree of protection increased as the red light dosage increased, regardless of the order of the red light and natural light period, indicating that red‐light‐induced resistance is time dependent. Feeding of detached leaves with a tryptophan decarboxylase inhibitor, s‐α‐fluoromethyltryptophan (0.1 mm ), for 24 h inhibited the development of resistance in response to red light irradiation. Suppression of resistance was also observed in leaves treated with a phenylalanine ammonia‐lyase inhibitor, α‐aminooxy acetic acid (0.5 mm ). These results suggest that the tryptophan and phenylpropanoid pathways are involved in the red‐light‐induced resistance of rice to B. oryzae.  相似文献   

16.
Temperate grasses frequently acquire resistance to herbivores through a symbiosis with epichloid fungi that produces alkaloids of variable deterrent effects. However, in those cases without apparent endophyte negative effects on domestic herbivores, it is not clear whether plant consumption or preference is affected or not. We performed three experiments with 1‐year‐old steers (Bos taurus, Aberdeen Angus) and the annual grass Lolium multiflorum, infected or not by Epichloë occultans to evaluate preference and to identify the underlying tolerance mechanisms. The first experiment evaluated steer preference for L. multiflorum cultivated in plots with three endophyte infection frequencies (low, medium and high), and investigated the role of canopy structure and plant nutritional traits on preference. The second experiment evaluated preference for chopped grass, offered in individual trays with contrasting infection frequencies (low and high), to discard possible effects associated with canopy structure and to focus on nutritional traits. The third experiment was performed with a tray + basket design that separated visual and olfactory stimuli from nutritional traits. High endophyte infection frequencies reduced consistently animal preference, even after short (~10 min) feeding events. However, we did not find significant evidence of plant structural, nutritional, visual or olfactory traits. Our results discarded several potential mechanisms; therefore, the dissuasive effect of fungal endophytes on animal consumption might be related to other mechanisms, including, likely, alkaloids and changes on grass metabolome.  相似文献   

17.
How long‐term antibiotic treatment affects host bacterial associations is still largely unknown. The honeybee‐gut microbiota has a simple composition, so we used this gut community to investigate how long‐term antibiotic treatment affects host‐associated microbiota. We investigated the phylogenetic relatedness, genomic content (GC percentage, genome size, number of genes and CRISPR) and antibiotic‐resistant genes (ARG) for strains from two abundant members of the honeybee core gut microbiota (Gilliamella apicola and Snodgrassella alvi). Domesticated honeybees are subjected to geographically different management policies, so we used two research apiaries, representing different antibiotic treatment regimens in their apiculture: low antibiotic usage (Norway) and high antibiotic usage (Arizona, USA). We applied whole‐genome shotgun sequencing on 48 G. apicola and 22 S. alvi. We identified three predominating subgroups of G. apicola in honeybees from both Norway and Arizona. For G. apicola, genetic content substantially varied between subgroups and distance similarity calculations showed similarity discrepancy between subgroups. Functional differences between subgroups, such as pectin‐degrading enzymes (G. apicola), were also identified. In addition, we identified horizontal gene transfer (HGT) of transposon (Tn10)‐associated tetracycline resistance (Tet B) across the G. apicola subgroups in the Arizonan honeybees, using interspace polymorphisms in the Tet B determinant. Our results support that honeybee‐gut symbiont subgroups can resist long‐term antibiotic treatment and maintain functionality through acquisition of geographically distinct antibiotic‐resistant genes by HGT.  相似文献   

18.
Polymyxin B has been re‐applied to the clinic as the final choice for the treatment of multidrug‐resistant gram‐negative pathogenic infections, but the use of polymyxin B has been re‐assessed because of the emergence and spread of the plasmid‐mediated mcr‐1 gene. The purpose of this study was to search for an MCR inhibitor synergistically acting with polymyxin to treat the infection caused by this pathogen. In this study, we used the broth microdilution checkerboard method to evaluate the synergistic effect of isoalantolactone (IAL) and polymyxin B on mcr‐1‐positive Enterobacteriaceae. Growth curve analysis, time‐killing assays and a combined disc test were used to further verify the efficacy of the combined drug. Colonization of the thigh muscle in mice, survival experiments and lung tissue section observations was used to determine the effect of synergy in vivo after Klebsiella pneumoniae and Escherichia coli infection. We screened a natural compound, IAL, which can enhance the sensitivity of polymyxin B to mcr‐1‐positive Enterobacteriaceae. The results showed that the combined use of polymyxin B and IAL has a synergistic effect on mcr‐1‐positive Enterobacteriaceae, such as K pneumoniae and E coli, not only in vitro but also in vivo. Our results indicate that IAL is a natural compound with broad application prospects that can prolong the service life of polymyxin B and make outstanding contributions to the treatment of gram‐negative Enterobacteriaceae infections resistant to polymyxin B.  相似文献   

19.
In the present study, we redescribed Gyrodinium resplendens through incubation of process bearing cysts extracted from sediment collected in the northern Gulf of Mexico. The morphology and ultrastructure of the motile stage and cyst stage were examined using light microscopy, scanning electron microscopy, and transmission electron microscopy and this revealed that the species should be transferred to the genus Barrufeta. This genus differs from other gymnodinioid genera in possessing a Smurf‐cap apical structure complex (ASC) and currently encompasses only one species, Barrufeta bravensis. B. resplendens shows a Smurf‐cap ASC that consists of three rows of elongated vesicles with small knobs in the middle one. B. resplendens is very similar to B. bravensis in cell morphology, but can be separated using the ultrastructure such as the shape and location of nucleus and pyrenoids, which highlights the importance of ultrastructure at inter‐specific level in the genus Barrufeta. The unique cysts of B. resplendens are brown and process bearing, and have a tremic archeopyle with a zigzag margin on the dorsal side of the epicyst, and not polar as in cysts of Polykrikos. The cysts do not survive the palynological treatment used here and probably have a wide distribution. Maximum‐likelihood and Bayesian inference were carried out based on partial large subunit ribosomal DNA (LSU rDNA) sequences. Molecular phylogeny supports that the genus Barrufeta is monophyletic, and that the genus Gymnodinium is polyphyletic. Our results suggest that details of the ASC together with ultrastructure are potential features to subdivide the genus Gymnodinium.  相似文献   

20.
Ben Smit  Andrew E. McKechnie 《Ibis》2015,157(4):774-786
Endothermic animals resident in hot, arid terrestrial environments are likely to face a trade‐off between their ability to obtain water and elevated thermoregulatory water requirements. We assessed whether daily water flux (DWF) is higher on hot days, reflecting increases in evaporative cooling demands, in an arid‐zone bird that obtains its water through food intake. We obtained measurements of DWF (partitioned into water influx and efflux rates) in 71 White‐browed Sparrow‐Weavers Plocepasser mahali at a desert site and a semi‐desert site, during summer in the Kalahari Desert of southern Africa. We found no evidence that DWF varied with maximum daily air temperature (Tair, range = 27.6–39.2 °C). Instead, DWF was lower during dry periods than in the wet season at the semi‐desert site. Furthermore, birds showed deficits in water balance (water influx/water efflux) during the dry periods at both sites. Our data show that DWF is low in a non‐drinking bird that obtains its water through food, and that demands for evaporative water loss on very hot days (maximum Tair of 40–44 °C) may exceed water intake rates during hot and dry periods. Species that do not have opportunities to drink will experience strong trade‐offs between thermoregulation, hydration state and activity levels as temperatures increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号