首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenological responses to climate change have been widely observed and have profound and lasting effects on ecosystems and biodiversity. However, compared to terrestrial ecosystems, the long‐term effects of climate change on species’ phenology are poorly understood in aquatic ecosystems. Understanding the long‐term changes in fish reproductive phenology is essential for predicting population dynamics and for informing management strategies, but is currently hampered by the requirement for intensive field observations and larval identification. In this study, a very low‐frequency sampling of juveniles and adults combined with otolith measurements (long axis length of the first annulus; LAFA) of an endemic Tibetan Plateau fish (Gymnocypris selincuoensis) was used to examine changes in reproductive phenology associated with climate changes from the 1970s to 2000s. Assigning individual fish to their appropriate calendar year class was assisted by dendrochronological methods (crossdating). The results demonstrated that LAFA was significantly and positively associated with temperature and growing season length. To separate the effects of temperature and the growing season length on LAFA growth, measurements of larval otoliths from different sites were conducted and revealed that daily increment additions were the main contributor (46.3%), while temperature contributed less (12.0%). Using constructed water‐air temperature relationships and historical air temperature records, we found that the reproductive phenology of G. selincuoensis was strongly advanced in the spring during the 1970s and 1990s, while the increased growing season length in the 2000s was mainly due to a delayed onset of winter. The reproductive phenology of G. selincuoensis advanced 2.9 days per decade on average from the 1970s to 2000s, and may have effects on recruitment success and population dynamics of this species and other biota in the ecosystem via the food web. The methods used in this study are applicable for studying reproductive phenological changes across a wide range of species and ecosystems.  相似文献   

2.
利用卫星遥感观测的区域尺度归一化植被指数(NDVI)和格点气候数据,借助Spearman相关分析及基于多变量回归分析的结构方程模型,研究了1982—2015年青藏高原植被生长季节变化对太平洋10年际涛动(PDO)的响应格局及机理过程.结果表明:青藏高原生长季(4—10月)平均NDVI与PDO指数存在显著的负相关关系,但是PDO与不同季节NDVI之间的关系呈现出明显的季节分异,具体表现为PDO与秋季NDVI的负相关关系强于夏季,且冬季PDO显著影响次年青藏高原夏季植被生长.另外,PDO对青藏高原植被生长的调控过程在季节间存在明显分异,夏季表现为PDO对温度和降水的共同调控,而秋季则以对温度调控为主.  相似文献   

3.
受全球气候变化的影响,青藏高原在过去的几十年间整体上呈现暖湿化的趋势,相比于年际之间温度和降水的变化外,生长季和非生长季气候变化模式的差异可能会对生态系统产生更重要的影响,但相关的研究尚不充分。以青藏高原东部的高寒草甸为研究对象,基于2001年至2017年17年的野外观测数据,包括优势植物紫花针茅的高度、多度以及生物量、次优势物种洽草的生物量,结合生长季和非生长季平均温度和降水量的变化,通过线性回归以及结构方程模型,探究生长季/非生长季不对称气候变化对于青藏高原高寒草甸优势物种生物量稳定性的影响。研究结果表明:1)青藏高原东部年均温和年降水在过去的17年间显著增加,呈现暖湿化的趋势,但是非生长的降水却变化不明显;2)紫花针茅的高度、多度以及生物量在过去17年没有显著的趋势,但是洽草的生物量稳定性显著减少;3)非生长降水结合紫花针茅的高度、多度以及洽草的生物量稳定性促进了紫花针茅的生物量稳定性。研究结果可以为青藏高原高寒草甸在未来气候变化的背景下合理保护与利用提供科学依据。  相似文献   

4.
Two new Juniper tree-ring-width (TRW) chronologies spanning more than 500 years were developed in the Yellow River source area, North Eastern Qinghai-Tibetan Plateau (NE-QTP). For the two studied sites, located approximately 50 km apart, split correlation and coherence analysis reveal unstable tree-growth responses to local moisture availability. While significant correlations are obtained with April–June local precipitation, Palmer Drought Severity Index (PDSI) and river flow from 1948/1954 to 1998 and from 1948/1954 to 1970s, these correlations vanish for the time period 1970s-1998. The local instrumental climate data (precipitation, PDSI and river flow) exhibit opposite correlations with large scale modes of variability (El Niño Southern Oscillation, ENSO, and Pacific Decadal Oscillation, PDO) before and after the 1977 PDO shift. One tree-ring chronology is coherent and anti-phased with instrumental ENSO/PDO indices at 5.2-year frequency. On the longer time span, this TRW chronology is compared with PDO reconstructed from historical Chinese data. This comparison also exhibits unstable multi-decadal relationships, notably in the mid 19th century. Altogether, the comparison between our two chronologies, local instrumental climate records, and ENSO/PDO indices suggest a cautious use of local TRW records for paleoclimate reconstructions. Further studies are needed to explore both the spatial coherency of tree-ring records and the temporal stability of their response to local and large scale climate variability.  相似文献   

5.
Seasonal Response of Grasslands to Climate Change on the Tibetan Plateau   总被引:1,自引:0,他引:1  

Background

Monitoring vegetation dynamics and their responses to climate change has been the subject of considerable research. This paper aims to detect change trends in grassland activity on the Tibetan Plateau between 1982 and 2006 and relate these to changes in climate.

Methodology/Principal Findings

Grassland activity was analyzed by evaluating remotely sensed Normalized Difference Vegetation Index (NDVI) data collected at 15-day intervals between 1982 and 2006. The timings of vegetation stages (start of green-up, beginning of the growing season, plant maturity, start of senescence and end of the growing season) were assessed using the NDVI ratio method. Mean NDVI values were determined for major vegetation stages (green-up, fast growth, maturity and senescence). All vegetation variables were linked with datasets of monthly temperature and precipitation, and correlations between variables were established using Partial Least Squares regression. Most parts of the Tibetan Plateau showed significantly increasing temperatures, as well as clear advances in late season phenological stages by several weeks. Rainfall trends and significant long-term changes in early season phenology occurred on small parts of the plateau. Vegetation activity increased significantly for all vegetation stages. Most of these changes were related to increasing temperatures during the growing season and in some cases during the previous winter. Precipitation effects appeared less pronounced. Warming thus appears to have shortened the growing season, while increasing vegetation activity.

Conclusions/Significance

Shortening of the growing season despite a longer thermally favorable period implies that vegetation on the Tibetan Plateau is unable to exploit additional thermal resources availed by climate change. Ecosystem composition may no longer be well attuned to the local temperature regime, which has changed rapidly over the past three decades. This apparent lag of the vegetation assemblage behind changes in climate should be taken into account when projecting the impacts of climate change on ecosystem processes.  相似文献   

6.
玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应   总被引:1,自引:0,他引:1  
张卫国  肖德荣  田昆  陈广磊  和荣华  张贇 《生态学报》2017,37(11):3796-3804
树木生长对气候变化的响应是国内外研究的热点。选择滇西北高原玉龙雪山海拔分布上限3个主要树种(长苞冷杉(Abies georgei)、丽江云杉(Picea likiangensis)和大果红杉(Larix potaninii Batal var.macrocarpa Law)),对其径向生长特征进行研究,构建差值年表,并分析其与温度和降水的相互关系。研究结果表明:(1)温度和降水均为玉龙雪山海拔上限树木生长的主要影响因子,但不同树种响应的时期和关系存在差异;(2)大果红杉生长主要受限于生长初期(5—6月)的水热条件,主要表现为与当年5月、6月以及生长初期(5—6月)的平均温呈显著正相关,以及与当年5月、6月以及生长初期的降水呈显著负相关;(3)长苞冷杉生长主要受限于生长初期(5—6月)的水分条件,表现为显著负相关,同时生长盛期(7—8月)温度的升高有利于其径向生长;(4)丽江云杉的生长则主要受限于生长季开始以前的气候条件,与上年12月以及当年5月的平均温呈显著负相关,与当年1月的降水呈显著正相关。本研究的结果可为气候变化对滇西北高原树木生长影响的研究提供参考,并为该地区历史气候重建提供科学基础。  相似文献   

7.
The resurrection plant Reaumuria soongorica is widespread across Asia, southern Europe, and North Africa and is considered to be a constructive keystone species in desert ecosystems, but the impacts of climate change on this species in desert ecosystems are unclear. Here, the morphological responses of R. soongorica to changes in rainfall quantity (30% reduction and 30% increase in rainfall quantity) and interval (50% longer drought interval between rainfall events) were tested. Stage‐specific changes in growth were monitored by sampling at the beginning, middle, and end of the growing season. Reduced rainfall decreased the aboveground and total biomass, while additional precipitation generally advanced R. soongorica growth and biomass accumulation. An increased interval between rainfall events resulted in an increase in root biomass in the middle of the growing season, followed by a decrease toward the end. The response to the combination of increased rainfall quantity and interval was similar to the response to increased interval alone, suggesting that the effects of changes in rainfall patterns exert a greater influence than increased rainfall quantity. Thus, despite the short duration of this experiment, consequences of changes in rainfall regime on seedling growth were observed. In particular, a prolonged rainfall interval shortened the growth period, suggesting that climate change‐induced rainfall variability may have significant effects on the structure and functioning of desert ecosystems.  相似文献   

8.
神祥金  张佳琦  吕宪国 《生态学报》2020,40(18):6259-6268
基于2000—2017年逐旬MODIS NDVI数据和逐月气温、降水数据,分析了青藏高原不同类型沼泽湿地植被生长季NDVI时空变化特征及其对气候变化的响应。研究结果表明:青藏高原沼泽植被生长季多年平均NDVI自西北向东南逐渐增加;沼泽植被生长季平均NDVI在2000—2017年总体呈现显著上升趋势 (0.010/10a) ,生长季NDVI呈上升趋势的面积占整个研究区面积的78.25%。青藏高原沼泽植被生长季NDVI与降水量总体上呈现弱的相关性,表明降水并不是影响该地区沼泽植被生长的主要因素。青藏高原沼泽植被生长主要受气温影响,气温升高能明显促进沼泽植被的生长。此外,首次发现白天和夜晚温度升高对青藏高原沼泽植被生长具有不对称性影响,其中夜晚增温对沼泽植被生长的促进效果更加显著。在全球白天和夜晚不对称增温的背景下,白天和夜晚温度对青藏高原沼泽植被的不对称影响应当引起重视,尤其是在利用模型模拟未来气候变化对该地区沼泽植被影响时。  相似文献   

9.
Tree-ring width and age structure of Juniperus przewalskii (Qilian juniper) forests were analyzed for four tree-line sites in Qilian and Anyemaqen Mountains, northeastern Tibetan Plateau, to investigate their relationships to climate change. Tree-line growth on Qilian Mountain was mainly limited by temperature at the low-frequency band. However, tree-line growth in the Anyemaqen Mountain was highly correlated with the current growing season temperature at the high-frequency band, and with the previous growing season precipitation at the low-frequency band. A temperature-stressed growth pattern at colder western sites and a moisture-stressed growth pattern at the warm, drier eastern tree-line sites were detected. The number of surviving trees in the tree-line ecotone was not clearly correlated with temperature before the 1900s. An unprecedented rise in the number of trees coincided well with the rapid global warming after the 1900s.  相似文献   

10.
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green‐up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site‐specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau.  相似文献   

11.
Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field‐grown trees to a ~45% reduction in precipitation with a rain‐out structure (‘drought’), a ~4.8 °C temperature increase with open‐top chambers (‘heat’), and a combination of both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.  相似文献   

12.
Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large‐scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth rate and percent change of four arctic herds using existing population estimates, and explored associations with indices of the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO). The AO, which more strongly affects eastern Alaska, was negatively associated with the population trends of the Porcupine Caribou Herd and Central Arctic Herd, the easternmost of the herds. We hypothesize that either increased snowfall or suboptimal growing conditions for summer forage plants could explain this negative relationship. Intensity of the PDO, which has greatest effects in western Alaska, was negatively associated with the growth rate of the Teshekpuk Caribou Herd in northwestern Alaska, but the Western Arctic Herd in western Alaska displayed the opposite trend. We suggest that the contrasting patterns of association relate to the spatial variability of the effects of the PDO on western and northwestern Alaska. Although predation and winter range quality have often been considered the primary causes of population variation, our results show that large‐scale climate patterns may play an important role in caribou population dynamics in arctic Alaska. Our findings reveal that climate warming has not acted uniformly to reduce caribou populations globally. Further research should focus on the relative importance of mechanisms by which climate indices influence caribou population dynamics.  相似文献   

13.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   

14.
色林错渔业生产的现状与可持续利用的对策   总被引:4,自引:0,他引:4  
色林错裸鲤(Gymnocypris selincuoensis)是藏北色林错湖泊中惟一的一种鱼类。本文介绍了色林错渔业的开发利用情况,并对色林错裸鲤最小捕捞年龄、捕捞强度、最小网目以及最佳年捕捞产量进行了探讨。从可持续发展的角度,我们认为对色林错鱼类资源的利用必须以保证现有湖泊生态系统的稳定为核心,在满足维持一个足够数量及年龄结构的繁殖群体的基础上,以获得最佳持续经济利益为目标。以往强调甚至采用的最大持续产量理论在高原极端环境条件下并不能作为鱼类资源利用的追求目标或确定渔产量的标准,而只能作为对其捕捞强度的参考。总的允许渔获量应当根据最适捕捞死亡率F0.2来确定。本文最后提出了色林错湖泊鱼类资源可持续利用的8条具体措施。  相似文献   

15.
We combine satellite and ground observations during 1950–2011 to study the long‐term links between multiple climate (air temperature and cryospheric dynamics) and vegetation (greenness and atmospheric CO2 concentrations) indicators of the growing season of northern ecosystems (>45°N) and their connection with the carbon cycle. During the last three decades, the thermal potential growing season has lengthened by about 10.5 days (P < 0.01, 1982–2011), which is unprecedented in the context of the past 60 years. The overall lengthening has been stronger and more significant in Eurasia (12.6 days, P < 0.01) than North America (6.2 days, P > 0.05). The photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn when factors such as light and moisture limitation may constrain photosynthesis. The autumnal extension of the photosynthetic growing season since 1982 appears to be about half that of the thermal potential growing season, yielding a smaller lengthening of the photosynthetic growing season (6.7 days at the circumpolar scale, P < 0.01). Nevertheless, when integrated over the growing season, photosynthetic activity has closely followed the interannual variations and warming trend in cumulative growing season temperatures. This lengthening and intensification of the photosynthetic growing season, manifested principally over Eurasia rather than North America, is associated with a long‐term increase (22.2% since 1972, P < 0.01) in the amplitude of the CO2 annual cycle at northern latitudes. The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO2 uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO2 to the atmosphere. These contrasting responses may be critical in determining the impact of continued warming on northern terrestrial ecosystems and the carbon cycle.  相似文献   

16.
张相锋  彭阿辉  宋凤仙  陈冬勤 《广西植物》2018,38(12):1675-1684
开顶式生长室(OTCs)增温实验是研究全球气候变化与陆地生态系统关系的主要方法之一,已广泛应用于青藏高原地区。该文通过对近些年国内外研究文献的回顾,分别从植物物候、群落结构、生物量和土壤方面综合分析青藏高原草地生态系统对OTCs模拟增温实验的响应。研究发现:增温使群落返青期提前、枯黄期延迟,生长季延长;有利于禾本科植物的生长;高寒草甸地下生物量分配格局向深层转移;高寒草地生态系统对模拟增温的响应存在不确定性,受到地域、群落类型和实验时间的影响;在增温条件下,降雨和冻土融化引起的土壤水分变化通过调控生态系统的物候、生产力、土壤等途径控制着生态系统对气候变暖的响应。并在此基础上,提出了将来应着重研究的几个方面。  相似文献   

17.
We developed the first tree-ring width chronology from Quercus brantii Lindel for the period 1796–2015 in the southern Zagros Mountains, Iran, using standard dendrochronological procedures. Climate-growth relationships revealed that DecemberöFebruary precipitation has strong positive effects (r = 0.66; P < 0.01) on the species’ growth while mean temperature during the growing season has strong negative effects. Spatial correlations with Palmer Drought Severity Index (PDSI) and gridded precipitation data revealed that the chronology contains regional climate signals and tree growth variations may represent precipitation fluctuations over large areas of the Middle East. The linear regression model accounts for 44% of the actual DecemberöFebruary precipitation variance. The reconstructed precipitation revealed that over the period 1850–2015 extreme dry years occurred in 1870-71, 1898, 1960 and 1963-64, and extreme wet years occurred in 1851, 1885, 1916 and 1921 in the southern Zagros region. The longest dry period lasted 16 years and occurred from 1958 to 1973. Two-year consecutive wet and dry events showed the highest frequencies and the average length of dry and wet events were 2.9 and 3.6 years over the reconstructed period. Correlations between the long-term reconstructed precipitation and the North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO) confirmed the effects of teleconnection patterns on precipitation in the southern Zagros region.  相似文献   

18.
利用青海不同生境祁连圆柏树木年轮样本,采用3种不同去趋势方法建立树轮年表,结合青海30个气象站的气象资料,分析不同生境和去趋势方法下祁连圆柏径向生长对气候的响应差异。结果表明,祁连山区,生长季前期的平均气温是祁连圆柏树木径向生长的主要限制性因子,NEP树轮标准化宽度年表与生长季前期冬季平均气温相关最好;在柴达木盆地,生长季降水量是该地区树木径向生长的限制性因子,SPL树轮年表对生长季降水量相关较好;在青南高原,祁连圆柏径向生长对春季温度响应最为敏感,而SPL年表与春季温度呈现明显的负相关关系,相关系数达-0.606;而在青海东部地区,祁连圆柏树木径向生长对气候的响应总体不显著。位于青海西部和北部的柴达木盆地和祁连山区祁连圆柏径向生长受西风气候的影响显著,尤其是柴达木盆地,其气候受西风主导;而青南高原受西南季风影响更为显著,该地区祁连圆柏径向生长同时受西南季风气候和海拔高度两方面影响;在青海东部,祁连圆柏径向生长受东亚季风影响更为显著。  相似文献   

19.
Changes in vegetation phenology directly reflect the response of vegetation growth to climate change. In this study, using the Normalized Difference Vegetation Index dataset from 1982 to 2015, we extracted start date of vegetation growing season (SOS), end date of vegetation growing season (EOS), and length of vegetation growing season (LOS) in the middle and eastern Eurasia region and evaluated linear trends in SOS, EOS, and LOS for the entire study area, as well as for four climatic zones. The results show that the LOS has significantly increased by 0.27 days/year, mostly due to a significantly advanced SOS (?0.20 days/year) and a slightly delayed EOS (0.07 days/year) over the entire study area from 1982 to 2015. The vegetation phenology trends in the four climatic zones are not continuous throughout the 34‐year period. Furthermore, discrepancies in the shifting patterns of vegetation phenology trend existed among different climatic zones. Turning points (TP) of SOS trends in the Cold zone, Temperate zone, and Tibetan Plateau zone occurred in the mid‐ or late 1990s. The advanced trends of SOS in the Cold zone, Temperate zone, and Tibetan Plateau zone exhibited accelerated, stalled, and reversed patterns after the corresponding TP, respectively. The TP did not occurred in Cold‐Temperate zone, where the SOS showed a consistent and continuous advance. TPs of EOS trends in the Cold zone, Cold‐Temperate zone, Temperate zone, and Tibetan Plateau zone occurred in the late 1980s or mid‐1990s. The EOS in the Cold zone, Cold‐Temperate zone, Temperate zone, and Tibetan Plateau zone showed weak advanced or delayed trends after the corresponding TP, which were comparable with the delayed trends before the corresponding TP. The shift patterns of LOS trends were primarily influenced by the shift patterns of SOS trends and were also heterogeneous within climatic zones.  相似文献   

20.
Alpine ecosystems are among those biomes that are most vulnerable to climate change. Cushion plants are an important life form of alpine ecosystems and will likely play a critical role for the resilience of these habitats to climate change. We studied cushion size distribution and different measures of the compactness of cushions (biomass and rosette density, leaf area index) of the cushion plant, Androsace tapete along an elevational gradient from 4500 to 5200 m a.s.l. in the Nyainqentanglha Mountains of the central Tibetan Plateau. Cushion size distribution, total cover, and compactness of cushions varied substantially along the elevational gradient. At the driest site at low elevation we found the lowest total cushion cover, a particularly high proportion of very small cushions, and the most compact cushions (highest rosette and biomass densities, and leaf area index (LAI) per cushion). Our results indicate that in the semi‐arid Tibetan Plateau water availability is the more important climate factor than temperature affecting cushion plant traits and morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号