共查询到20条相似文献,搜索用时 15 毫秒
1.
《New Zealand journal of zoology.》2012,39(1):53-70
ABSTRACTThe invertebrate fauna of five ephemeral forest streams on Hauturu-o-Toi/Little Barrier Island in northern New Zealand was assessed in January 2014. Low summer flows restricted benthic sampling largely to pools that would, during periods of ‘normal’ flow, be main-channel riffle/run habitat. Additionally, adult stages of aquatic insects were sampled by light trapping. Fifty-three aquatic species/morphospecies were recorded during the study, including 25 new records, bringing total island species richness to 65. The fauna was dominated by Ephemeroptera and Trichoptera; species richness of Plecoptera and Diptera was low, and only single species of Mollusca and Crustacea were recorded. Species found were either common with broad New Zealand distributions, or species restricted to the North Island. No species was endemic to the island. Faunal comparisons with adjacent mainland streams indicated the island had similar assemblages of core taxa, but generally lower species richness, likely resulting from physiographic differences found there. 相似文献
2.
1. Previous studies have identified lowland areas as barriers to gene flow (dispersal) between distinct mountain ranges in montane species of aquatic insects. In this study, we investigated the population genetic structure of two closely related Atalophlebia (mayfly) species inhabiting lowland areas of south‐east Queensland, Australia, with the expectation of widespread gene flow throughout the low‐altitude environment and associated homogeneous genetic structure. 2. In particular, we asked whether species with lower‐altitude distributions demonstrate greater spatial distribution of mtDNA (COI) alleles than the upland species studied previously. This pattern would be expected if good dispersal ability is associated with population persistence in these drought‐prone habitats. 3. The two species demonstrated contrasting genetic population structure. Atalophlebia sp. AV13 D revealed strong population structure, with populations on each side of the low‐altitude area isolated from each other for a long time (c.350 kya), and the presence of an isolation‐by‐distance pattern over relatively small geographical distances (<40 km). In contrast, Atalophlebia sp. AV13 A was panmictic at the scale investigated (≤160 km), with no history of past population fragmentation. 4. Examination of sample distribution along the altitudinal gradient reveals that Atalophlebia sp. AV13 D may have a more upland distribution (associated with greater habitat stability) than previously supposed, while Atalophlebia sp. AV13 A inhabits more xeric lowland areas, where freshwater habitats are less stable. We consequently hypothesise that these contrasting genetic population structures result from differences in habitat stability along the altitudinal gradient, only species with good dispersal ability being able to persist in unstable habitats. These findings may be applicable to other regions of the globe where habitat instability is associated with altitudinal gradients. 相似文献
3.
1. The causes of distribution patterns of stygobionts (obligate subterranean-dwelling aquatic species) were examined with special emphasis on vicariance and dispersal.
2. Dispersal was investigated on the premise that if migration is important, then migration at small scales should predict patterns at larger scales. Data on the copepod fauna of epikarst in Slovenia were especially useful for the study of migration, because data on habitat occupancy could be collected at scales of individual drips located metres apart to the scale of individual caves to entire karst regions. Occupancy of drips in one cave was a remarkably good predictor of occupancy of caves in a region, although not of the overall range of a given species. These results were also supported by occupancy patterns of the general stygobiotic fauna of West Virginia caves, compared at different scales.
3. Vicariance was investigated by noting that proximity to marine embayments increases the likelihood of vicariant speciation. In the U.S.A., only the fauna of the Edwards Aquifer of Texas has a significant component of marine-derived species. Differences in shape of the relationship between species number and number of caves in a county indicated that the marine-derived component represented an addition to rather than a replacement of the other stygobiotic species.
4. Thus, we found evidence for the importance of both vicariance and dispersal. The techniques employed could be used to study these patterns more generally, as more data become available. 相似文献
2. Dispersal was investigated on the premise that if migration is important, then migration at small scales should predict patterns at larger scales. Data on the copepod fauna of epikarst in Slovenia were especially useful for the study of migration, because data on habitat occupancy could be collected at scales of individual drips located metres apart to the scale of individual caves to entire karst regions. Occupancy of drips in one cave was a remarkably good predictor of occupancy of caves in a region, although not of the overall range of a given species. These results were also supported by occupancy patterns of the general stygobiotic fauna of West Virginia caves, compared at different scales.
3. Vicariance was investigated by noting that proximity to marine embayments increases the likelihood of vicariant speciation. In the U.S.A., only the fauna of the Edwards Aquifer of Texas has a significant component of marine-derived species. Differences in shape of the relationship between species number and number of caves in a county indicated that the marine-derived component represented an addition to rather than a replacement of the other stygobiotic species.
4. Thus, we found evidence for the importance of both vicariance and dispersal. The techniques employed could be used to study these patterns more generally, as more data become available. 相似文献
4.
1. The biological impact of glaciation in Southern Hemisphere freshwaters is poorly understood. Several large rivers of eastern South Island, New Zealand, represent a mosaic of glaciated and non-glaciated regions, and are thus well-suited for studies of post-glacial recolonization.
2. We conducted mtDNA analyses of South Island's endemic non-migratory longjaw galaxiids Galaxias prognathus and G. cobitinis (Osmeriformes: Galaxiidae) to test hypotheses of post-glacial recolonization, and to assess the vicariant effects of Pleistocene mountain building.
3. We analysed the phylogeography of longjaw cytochrome b sequences from 38 sites in central South Island ( n = 83). On the basis of our sampling it seems that G. prognathus and G. cobitinis have a parapatric distribution in the Waitaki River system, their disjunction broadly coinciding with three large post-glacial lakes. Waitaki clades of both species are deeply divergent relative to conspecific taxa in drainages to the north and south.
4. Tests for recent population growth – predicted under post-glacial expansion of G. prognathus – do not refute recent recolonization of streams above glaciated lakes in the Waitaki River drainage. The apparent absence of potential 'source' populations from non-glaciated regions suggests a post-glacial population decline for G. prognathus below the Waitaki lakes.
5. Molecular clock calibrations based on several freshwater vicariant events elsewhere in New Zealand supported the geologically-derived hypothesis of Waitaki–Canterbury drainage isolation approximately 300 ka. 相似文献
2. We conducted mtDNA analyses of South Island's endemic non-migratory longjaw galaxiids Galaxias prognathus and G. cobitinis (Osmeriformes: Galaxiidae) to test hypotheses of post-glacial recolonization, and to assess the vicariant effects of Pleistocene mountain building.
3. We analysed the phylogeography of longjaw cytochrome b sequences from 38 sites in central South Island ( n = 83). On the basis of our sampling it seems that G. prognathus and G. cobitinis have a parapatric distribution in the Waitaki River system, their disjunction broadly coinciding with three large post-glacial lakes. Waitaki clades of both species are deeply divergent relative to conspecific taxa in drainages to the north and south.
4. Tests for recent population growth – predicted under post-glacial expansion of G. prognathus – do not refute recent recolonization of streams above glaciated lakes in the Waitaki River drainage. The apparent absence of potential 'source' populations from non-glaciated regions suggests a post-glacial population decline for G. prognathus below the Waitaki lakes.
5. Molecular clock calibrations based on several freshwater vicariant events elsewhere in New Zealand supported the geologically-derived hypothesis of Waitaki–Canterbury drainage isolation approximately 300 ka. 相似文献
5.
Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams 总被引:1,自引:0,他引:1
JANE M. HUGHES 《Freshwater Biology》2007,52(4):616-631
1. The ‘Field of Dreams Hypothesis’ states ‘if we build it, they will come’, referring to the assumption that if habitats are restored, species will recolonise them. However, the ability of a species to recolonise a restored site will depend not only on the appropriate habitat being present, but also on the ability to get there. This is likely to depend on both the species’ dispersal behaviour and the position of a site in the landscape. 2. Animals with good potential for dispersal are more likely to be able to disperse to newly restored sites. Similarly, sites in lowland streams with limited altitudinal differences between sites may be easier to reach than upstream sites. This is because upstream sites are connected to one another via lowland streams that have different characteristics and therefore may be difficult for animals to traverse. 3. In this paper, genetic data from a range of freshwater species that have been analysed in my laboratory are used to assess the importance of life cycle and position in the landscape (i.e. upland versus lowland streams) on connectivity patterns (and thus recolonisation potential) among populations. 4. In general, contemporary dispersal across catchment boundaries is negligible, except for aquatic insects with an adult flight stage. Dispersal among streams within catchments appears to be more limited than was predicted from knowledge on life histories, except for fish in lowland rivers and streams. 5. As predicted, dispersal of fish, crustaceans and molluscs among streams within catchments is significantly greater in lowland rivers than in upland streams. 6. Overall, these analyses suggest that, with the exception of most insects, and fishes in lowland rivers, natural recolonisation of restored sites is only likely from sites within the same stream. If a species has disappeared from the whole stream, then restoration of habitat alone may not be sufficient for its re‐establishment. 相似文献
6.
Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach 总被引:1,自引:0,他引:1
Coulon A Cosson JF Angibault JM Cargnelutti B Galan M Morellet N Petit E Aulagnier S Hewison AJ 《Molecular ecology》2004,13(9):2841-2850
Changes in agricultural practices and forest fragmentation can have a dramatic effect on landscape connectivity and the dispersal of animals, potentially reducing gene flow within populations. In this study, we assessed the influence of woodland connectivity on gene flow in a traditionally forest-dwelling species--the European roe deer--in a fragmented landscape. From a sample of 648 roe deer spatially referenced within a study area of 55 x 40 km, interindividual genetic distances were calculated from genotypes at 12 polymorphic microsatellite loci. We calculated two geographical distances between each pair of individuals: the Euclidean distance (straight line) and the 'least cost distance' (the trajectory that maximizes the use of wooded corridors). We tested the correlation between genetic pairwise distances and the two types of geographical pairwise distance using Mantel tests. The correlation was better using the least cost distance, which takes into account the distribution of wooded patches, especially for females (the correlation was stronger but not significant for males). These results suggest that in a fragmented woodland area roe deer dispersal is strongly linked to wooded structures and hence that gene flow within the roe deer population is influenced by the connectivity of the landscape. 相似文献
7.
Aim Waterbirds may play an important role in the maintenance of aquatic ecosystem biodiversity by transporting plants and invertebrate propagules between different wetlands. The aim of this study is to provide the first quantitative analysis of the transport of plant and animal propagules by a community of waterbirds. Location Doñana marshes in south‐west Spain. Methods We quantified the number of intact seeds and invertebrate eggs in 386 faecal samples from 11 migratory waterfowl species (10 ducks and coot), collected from 3 November to 3 December 1998 (when birds were arriving from further north), and 22–25 February 1999 (when birds were leaving Doñana). Results Intact seeds of at least 7 plant genera, and invertebrate eggs (ephippia of at least 2 crustacea, statoblasts of at least 2 bryozoans and eggs of Corixidae) occurred in 65.6% of the faecal samples in early winter and 67.8% in late winter. Main conclusions The abundance of different propagule types varied between waterfowl species in a seasonal and species specific manner, probably owing to differences in foraging strategies, bill and gut morphology, and seasonal shifts in propagule availability or distribution. Lamellar density was positively correlated with the abundance of intact propagules. Our results confirm that waterfowl play an important role in the dispersal of organisms in aquatic environments by internal transport. Wherever there is a propagule bank accessible to waterbirds, transport can occur even when propagule production and waterfowl movements do not overlap in time. 相似文献
8.
An extraordinary diversity of epiphytic lichens is found in the boreal rainforest of central Norway, the highest-latitude rainforest in the world. These rainforest relicts are located in ravine systems, and clear cutting has increased the distance between remaining patches. We hypothesized that the relatively small lichen populations in the remaining forest stands have suffered a depletion of genetic diversity through bottlenecks and founder events. To test this hypothesis, we assessed genetic diversity and structure in the populations of the tripartite lichen Lobaria pulmonaria using eight SSR loci. We sampled thalli growing on Picea abies branches and propagules deposited in snow at three localities. Contrary to expectations, we found high genetic diversity in lichen and snow samples, and high effective sizes of the studied populations. Also, limited genetic differentiation between populations, high historical migration rates, and a high proportion of first generation immigrants were estimated, implying high connectivity across distances <30km. Almost all genetic variation was attributed to variation within sites; spatial genetic structures within populations were absent or appeared on small scales (5-10m). The high genetic diversity in the remaining old boreal rainforests shows that even relict forest patches might be suitable for conservation of genetic diversity. 相似文献
9.
Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus) 总被引:1,自引:0,他引:1
Vignieri SN 《Molecular ecology》2005,14(7):1925-1937
In species affiliated with heterogeneous habitat, we expect gene flow to be restricted due to constraints placed on individual movement by habitat boundaries. This is likely to impact both individual dispersal and connectivity between populations. In this study, a GIS-based landscape genetics approach was used, in combination with fine-scale spatial autocorrelation analysis and the estimation of recent intersubpopulation migration rates, to infer patterns of dispersal and migration in the riparian-affiliated Pacific jumping mouse (Zapus trinotatus). A total of 228 individuals were sampled from nine subpopulations across a system of three rivers and genotyped at eight microsatellite loci. Significant spatial autocorrelation among individuals revealed a pattern of fine-scale spatial genetic structure indicative of limited dispersal. Geographical distances between pairwise subpopulations were defined following four criteria: (i) Euclidean distance, and three landscape-specific distances, (ii) river distance (distance travelled along the river only), (iii) overland distance (similar to Euclidean, but includes elevation), and (iv) habitat-path distance (a least-cost path distance that models movement along habitat pathways). Pairwise Mantel tests were used to test for a correlation between genetic distance and each of the geographical distances. Significant correlations were found between genetic distance and both the overland and habitat-path distances; however, the correlation with habitat-path distance was stronger. Lastly, estimates of recent migration rates revealed that migration occurs not only within drainages but also across large topographic barriers. These results suggest that patterns of dispersal and migration in Pacific jumping mice are largely determined by habitat connectivity. 相似文献
10.
Corinne L. Richards-Zawacki 《Diversity & distributions》2009,15(5):796-806
Aim Understanding how heterogeneous landscapes shape genetic structure not only sheds light on processes involved in population divergence and speciation, but can also guide management strategies to promote and maintain genetic connectivity of populations of endangered species. This study aimed to (1) identify barriers and corridors for gene flow among populations of the endangered frog, Atelopus varius and (2) assess the relative contributions of alternative landscape factors to patterns of genetic variation among these populations in a hypothesis testing framework. Location This study took place in western Panama and included all nine of the remaining known populations of A. varius at the time of study. Methods The influence of landscape variables on gene flow among populations was examined by testing for correlations between alternative landscape‐resistance scenarios and genetic distance. Fifteen alternative hypotheses about the influence of (1) riparian habitat corridors, (2) steep slopes, and (3) climatic suitability on patterns of genetic structure were tested in a causal modelling framework, using Mantel and partial‐Mantel tests, along with an analysis of molecular variation. Results Only the hypothesis attributing resistance to dispersal across steep slopes (genetic isolation by slope distance) was fully supported by the causal modelling approach. However, the analysis of molecular variance and the paths of least‐slope among populations suggest that riparian habitat connectivity may influence genetic structure as well. Main conclusions These results suggest that patterns of genetic variation among A. varius populations are affected by the slope of the landscape such that areas with steep slopes act as barriers to gene flow. In contrast, areas of low slope, such as streams and mountain ridges, appear to be important corridors for gene flow, especially among high elevation populations. These results engender important considerations for the management of this critically endangered species. 相似文献
11.
Probably no conservation genetics issue is currently more controversial than the question of whether grey wolves (Canis lupus) in the Northern Rockies have recovered to genetically effective levels. Following the dispersal‐based recolonization of Northwestern Montana from Canada, and reintroductions to Yellowstone and Central Idaho, wolves have vastly exceeded population recovery goals of 300 wolves distributed in at least 10 breeding pairs in each of Wyoming, Idaho and Montana. With >1700 wolves currently, efforts to delist wolves from endangered status have become mired in legal battles over the distinct population segment (DPS) clause of the Endangered Species Act (ESA), and whether subpopulations within the DPS were genetically isolated. An earlier study by vonHoldt et al. (2008) suggested Yellowstone National Park wolves were indeed isolated and was used against delisting in 2008. Since then, wolves were temporarily delisted, and a first controversial hunting season occurred in fall of 2009. Yet, concerns over the genetic recovery of wolves in the Northern Rockies remain, and upcoming District court rulings in the summer of 2010 will probably include consideration of gene flow between subpopulations. In this issue of Molecular Ecology, vonHoldt et al. (2010) conduct the largest analysis of gene flow and population structure of the Northern Rockies wolves to date. Using an impressive sampling design and novel analytic methods, vonHoldt et al. (2010) show substantial levels of gene flow between three identified subpopulations of wolves within the Northern Rockies, clarifying previous analyses and convincingly showing genetic recovery. 相似文献
12.
G. CARINI J. M. HUGHES 《Biological journal of the Linnean Society. Linnean Society of London》2006,88(1):1-16
Populations of the Australian freshwater snail Notopala sublineata (Conrad, 1850) have declined rapidly over the last decade, but are still abundant in most river systems of Western Queensland. These rivers are characterized by the unpredictable and highly variable nature of their climatic and hydrological regimes, with episodic periods of very large flow and many periods of little or no flow. We used mitochondrial sequences and allozymes to investigate the genetic structure and infer patterns of dispersal of N. sublineata within this unique environment. We sampled 24 waterholes throughout the four major catchments of the Lake Eyre Basin. Based on a 457-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, we identified 55 haplotypes in a sample of 256 individuals. Both nuclear and mitochondrial genetic datasets indicated high levels of genetic subdivision and restricted gene flow among populations within and among catchments. The mitochondrial haplotypes clustered into two main geographical clades, corresponding with two groups of adjacent catchments: Cooper–Bulloo and Diamantina–Georgina, which appear to have diverged 300 000 years ago. Populations of N. sublineata within these adjacent catchments seem to have diverged relatively recently, roughly 130 000 years ago. Contemporary dispersal seems to be absent between catchments but we suggest that climate fluctuations during the Pleistocene resulted in extensive floods that promoted historical movement of aquatic organisms across catchment boundaries. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 1–16. 相似文献
13.
14.
Little is known about how a 70% loss of native forests has affected the genetic connectivity of remnant bird populations in New Zealand. We use the common and widely distributed New Zealand Bellbird Anthornis melanura as an indicator species of population connectivity for well‐flighted birds. Using eight microsatellite loci, we identified five main genetic populations in the North Island, South Island, sub‐Antarctic Auckland Islands and two small remnant island populations adjacent to a large region of avian extirpations in northern North Island. Only one remnant island population, on a 30‐year‐old conservation reserve at Tiritiri Matangi, displayed a clear signature of recent genetic bottleneck. The 7% migration rate at Tiritiri Matangi indicates that bottlenecks can be maintained despite habitat rehabilitation, possibly through behavioural barriers to gene flow. Adjacent to the same extirpation zone, Bellbirds on the Poor Knights Islands were found to have low genetic diversity and low re‐colonization potential. Two gaps concordant with deforestation patterns separated the Kapiti Coast of southern North Island from populations to both the north and the south. In summary, we identified linked avian habitats, as well as isolated and inbred populations and suggest that Bellbirds are good re‐colonizers. We emphasize the importance of genetic studies that assess animal dispersal among newly rehabilitated habitat patches. 相似文献
15.
Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant. 相似文献
16.
17.
18.
Demographic and genetic replenishment of populations through the exchange of individuals is essential for their persistence. Habitat loss and fragmentation can reduce the permeability of landscapes, hinder dispersal and compromise the genetic integrity of populations over time. We examined ecological connectivity in an arboreal marsupial, the common ringtail possum (Pseudocheirus peregrinus) in fragmented forests of southeastern Australia. This species is potentially robust to fragmentation based on its presence in degraded landscapes and known use of plantations for foraging and nesting. Using 312 individuals screened at 15 microsatellites, we measured dispersal and gene flow across seven native Eucalyptus forest remnants surrounded by exotic Pinus radiata plantations and three sites within a large continuous forest. The permeability of the pine matrix to dispersing possums was significantly lower than that of the native forest. Small, isolated patches exhibited signatures of genetic drift, having lower heterozygosity and allelic richness than possums in large patches. Most (87%) possums were born in their sampled patch or dispersed only short distances into neighbouring remnants. The continuous forest was identified as an important source of immigrants only for proximate patches (within 2.5 km), thus emphasizing for the common ringtail possum and more specialized arboreal mammals the need to conserve large, proximate forest remnants. Our findings highlight the importance of using genetic tools to understand the long-term biological consequences of fragmentation for effective management. 相似文献
19.
Chemically-mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera,Poecilosclerida) 总被引:2,自引:3,他引:2
Five temporary forest pools at Noxubee National WildlifeRefuge,Noxubee Co., Mississippi were surveyed monthly for three yearstogain a better understanding of the dynamics of temporaryaquatichabitats. The objective of this study was to characterize thephysicochemical and biological changes in temporary pools inorderto assess the temporal habitat diversity. These ecosystems,allwithin no more than 4 km of one another, were heterotrophicwith adetrital-based food web derived from allochthonous leaflitter.These pools were chosen because of their close proximity tooneanother, they historically filled and dried seasonally, andtheywere known breeding sites for resident amphibian populations.Only47% of the amphibian cohorts inhabiting the pools appeared tothrive and metamorphose prior to pool desiccation. Successfuldevelopment and dispersal of larvae was variable among poolsandyears. We found that the filling cycles differed amonghabitats andthat physiochemical and biological parameters were highlyvariable.Our data suggest that ephemeral pools in this central piedmontregion of Mississippi are each unique and represent habitatsof lowpredictability for amphibian breeding and success. We concludethatit is erroneous to draw generalizations regarding a typicaltemporary pool ecosystem within this region. 相似文献
20.
DAVID C. PAVLACKY JR† ANNE W. GOLDIZEN PETER J. PRENTIS‡ JAMES A. NICHOLLS§ ANDREW J. LOWE‡¶ 《Molecular ecology》2009,18(14):2945-2960
Landscape genetics is an important framework for investigating the influence of spatial pattern on ecological process. Nevertheless, the standard analytic frameworks in landscape genetics have difficulty evaluating hypotheses about spatial processes in dynamic landscapes. We use a predictive hypothesis-driven approach to quantify the relative contribution of historic and contemporary processes to genetic connectivity. By confronting genetic data with models of historic and contemporary landscapes, we identify dispersal processes operating in naturally heterogeneous and human-altered systems. We demonstrate the approach using a case study of microsatellite polymorphism and indirect estimates of gene flow for a rainforest bird, the logrunner ( Orthonyx temminckii ). Of particular interest was how much information in the genetic data was attributable to processes occurring in the reconstructed historic landscape and contemporary human-modified landscape. A linear mixed model was used to estimate appropriate sampling variance from nonindependent data and information-theoretic model selection provided strength of evidence for alternative hypotheses. The contemporary landscape explained slightly more information in the genetic differentiation data than the historic landscape, and there was considerable evidence for a temporal shift in dispersal pattern. In contrast, migration rates estimated from genealogical information were primarily influenced by contemporary landscape change. We discovered that landscape heterogeneity facilitated gene flow before European settlement, but contemporary deforestation is rapidly becoming the most important barrier to logrunner dispersal. 相似文献