首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In unicolonial populations of ants, individuals can mix freelywithin large networks of nests that contain many queens. Ithas been proposed that the absence of aggression in unicolonialpopulations stems from a loss of nest mate recognition, butfew studies have tested this hypothesis. We investigated patternsof aggression and nest mate recognition in the unicolonial woodant, Formica paralugubris. Little aggression occurred, evenbetween workers from nests separated by up to 5 km. However,when aggression took place, it was directed toward non–nestmates rather than nest mates. Trophallaxis (exchange of liquidfood) occurred very frequently, and surprisingly, workers performedsignificantly more trophallaxis with non–nest mates thanwith nest mates (bias 2.4:1). Hence, workers are able to discriminatenest mates from non–nest mates. Higher rates of trophallaxisbetween non–nest mates may serve to homogenize the colonyodor or may be an appeasement mechanism. Trophallaxis rate andaggression level were not correlated with geographical distanceand did not differ within and between two populations separatedby several kilometers. Hence, these populations do not representdifferentiated supercolonies with clear-cut behavioral boundaries.Overall, the data demonstrate that unicoloniality can evolvedespite well-developed nest mate recognition. Reduced levelsof aggression might have been favored by the low rate of interactionswith foreign workers, high cost of erroneously rejecting nestmates, and low cost of accepting foreign workers.  相似文献   

3.
Some species of ants possess an unusual form of social organization in which aggression among nests is absent. This type of social organization, called unicoloniality, has been studied in only a handful of species and its evolutionary origins remain unclear. To date, no study has examined behavioural and genetic patterns at points of contact between the massive supercolonies that characterize unicoloniality. Since interactions at territory boundaries influence the costs of aggression and the likelihood of gene flow, such data may illuminate how supercolonies are formed and maintained. Here we provide field data on intraspecific territoriality for a widespread and invasive unicolonial social insect, the Argentine ant (Linepithema humile). We observed abrupt and well-defined behavioural boundaries at 16 contact zones between three different pairs of supercolonies. We visited nine of these zones weekly during a six-month period and observed consistent and intense intercolony aggression that resulted in variable, but often large, levels of worker mortality. Microsatellite variation along six transects across territory borders showed that F(ST) values were lower within supercolonies (0.08 +/- 0.01 (mean +/- SE)) than between supercolonies (0.29 +/- 0.01) and that this disparity was especially strong right at territory borders, despite direct and prolonged contact between the supercolonies. Matrix correspondence tests confirmed that levels of aggression and genetic differentiation were significantly correlated, but no relationship existed between geographic distance and either intraspecific aggression or genetic differentiation. Patterns of F(ST) variation indicated high levels of gene flow within supercolonies, but little to no gene flow between them. Overall, these findings are inconsistent with a model of relaxed ecological constraints leading to colony fusion and suggest that environmentally derived cues are not the prime determined of nestmate recognition in field populations of Argentine ants.  相似文献   

4.
大别山五针松种内和种间竞争强度   总被引:5,自引:0,他引:5  
通过对安徽省岳西县大别山五针松群落内的53株对象木及2079株竞争木的调查,运用Hegyi单木竞争模型分析了大别山五针松的种内和种间竞争强度。结果表明,大别山五针松的种内和种间竞争强度分别为17.11%和82.89%,说明竞争主要来自种间。大别山五针松的伴生种较多,种内与主要伴生种间的竞争关系为短柄枹大别山五针松种内黄山松满山红茅栗金缕梅紫茎四照花灯台树鹅耳枥。竞争强度随对象木胸径的增大而减小,当对象木的胸径小于25cm时,所受到的竞争强度较大;当胸径在25cm以上时,竞争强度变化很小,二者符合幂函数关系(CI=AD-B),所得的预测模型能很好的预测大别山五针松种内和种间竞争强度。  相似文献   

5.
Summary. Nestmate recognition cues can derive from both environmental and genetic factors, but can also be modulated in response to context-specific cues. Synchronous changes in nestmate recognition systems occur seasonally in some species of ants, however the mechanisms underlying these seasonal changes are often unknown. We studied two mechanisms, relative brood number and food availability, to determine if they generate temporal variation in intraspecific aggression in an introduced population of the Argentine ant, Linepithema humile. Using data from previous studies we found that seasonal increases in aggression levels correlate with seasonal increases in brood-to-worker ratios in the field. However, when we manipulated brood-to-worker ratios in paired experimental colonies, we found no direct evidence that relative brood numbers influenced aggression levels. To determine if food availability influenced aggression we conducted a second experiment in which we randomly assigned pairs of experimental colonies to starved or fed treatments and then measured aggression levels weekly for five weeks. We observed no difference in the level of aggression between these two treatment groups indicating that food availability also has no affect on aggression levels between hostile conspecific colonies.Received 24 August 2004; revised 15 September 2004; accepted 23 September 2004.  相似文献   

6.
分析不同比例组成的马尾松(Pinus massoniana)-木荷(Schima superba)混交林树木间的竞争关系,可为营造种间关系协调的马尾松混交林提供参考依据.以马尾松-木荷混交林为研究对象,根据其混交比例分别类型Ⅰ(对照,10马)、类型Ⅱ(8马2木)、类型Ⅲ(7马3木)、类型Ⅳ(6马4木)4种类型设置标准地...  相似文献   

7.
1. Patterns of aggression between ants from different nests influence colony and population structure. Several species of invasive ants lack colony boundaries over large expanses, forming ‘supercolonies’ with many nests among which workers can move without encountering aggression. 2. Bioassays of aggression were used to determine the colony structure of the invasive ant Myrmica rubra (L.) at eight sites in Massachusetts, the state where the species was first discovered in North America. To improve the ability to distinguish systematic patterns from background variability in aggressiveness, a repeated‐measures design was used and replicate assays for each pair of nests were conducted. 3. Aggressive responses showed that populations at all sites consisted of multiple distinct colonies. Patterns of aggression were repeatable and transitive, with few exceptions. Colonies were identified as clusters of nests whose workers showed little to no aggression towards one another but were aggressive towards conspecifics from more distant nests. 4. The degree of aggression varied considerably among different colony pairs but did not depend in any consistent way on the distance of separation or on whether colonies were neighbours. 5. Territories of neighbouring colonies abutted, indicating that they were restricted by intraspecific competition. Mapped territories ranged in size from 0.03 to 1.2 ha, but colonies at the study sites have not undergone the enormous expansions seen in introduced populations of some other species of invasive ants, and neighbouring colonies compete locally.  相似文献   

8.
Native to Argentina and Brazil, the Argentine ant (Linepithema humile) is an invasive species that has become established on six continents and many oceanic islands. In several parts of its introduced range, including the western United States, southern Europe and Chile, the Argentine ant is unicolonial, forming extensive supercolonies. We examined population genetic structure and intercolony aggression in two regions of the introduced range of this species in the United States: California and the southeastern United States. Our results show that the southeastern L. humile population has high genotypic variability and strong intercolony aggression relative to the California population. In the California population, intercolony aggression was absent and 23 alleles were found across seven polymorphic microsatellite loci. However, in the Southeast, aggression between colonies was high and 47 alleles were present across the same seven loci in an equal number of colonies. We suggest that distinctly different colonization patterns for California and the Southeast may be responsible for the striking disparity in the genetic diversity of introduced populations. Southeastern colonies may have descended from multiple, independent introductions from the native range, undergoing a bottleneck at each introduction. In contrast, the California supercolony may have originated from one or more colonies inhabiting the southeastern United States, thus experiencing a double bottleneck. The differences in present-day distribution patterns between California and the Southeast may be due to the combined effect of two factors: lower winter temperatures in the Southeast and/or competition with another successful and widely distributed ant invader, the fire ant Solenopsis invicta.  相似文献   

9.
浙江天台山甜槠种内与种间竞争研究   总被引:8,自引:0,他引:8  
采用Hegyi的单木竞争指数模型对天台山的甜槠种内、种间的竞争强度进行定量分析。结果表明 ,甜槠种内竞争强度随着林木径级的增大而逐渐减小 ,种内竞争较之与其伴生树种间的竞争剧烈。甜槠种内、种间竞争强度的顺序为 :甜楮 >木荷 >马尾松 >尾叶冬青 >虎皮楠 >短柄木包 >珍珠栗。竞争木对对象木的竞争强度与对象木的个体大小服从幂函数关系 ,竞争强度和对象木个体的大小呈极显著的负相关关系。当甜槠胸径达到 30cm后 ,竞争强度变化不明显 ,说明此时该生态系统已基本达到稳定状态。  相似文献   

10.
Introduction experiments may prove useful in understanding the mechanisms underlying the successful establishment of invasive ant species into new areas. These manipulative introductions could be particularly helpful in exploring the interactions between invasive species and the local fauna and flora. However, the inherent risk of accidental establishment in such experiments poses unacceptable ethical concerns. Some of the worst invasive species are tramp ant species, which can adversely affect biodiversity and community structure after establishment. We conducted laboratory and field experiments investigating a safe methodology for carrying out introduction experiments using the sterile workers of the invasive Argentine ant, Linepithema humile, as a model. We found no difference in foraging rate between worker-only colonies of L. humile and complete colonies, containing queens, workers and brood. Worker-only L. humile colonies showed the same exploitative and interference ability as complete colonies in bait dominance trials with the odorous house ant, Tapinoma sessile, in both laboratory and field trials. We suggest that for those invasive ant species with sterile workers, worker-only colonies may be substituted for complete colonies in short-term field experiments in new areas. Received 18 January 2007; revised 19 June 2007; accepted 22 June 2007.  相似文献   

11.
天然东北红豆杉(Taxus cuspidata)种内和种间竞争   总被引:16,自引:4,他引:16  
竞争是植物种内和种间关系的主要形式之一。通过对黑龙江穆棱东北红豆杉自然保护区的95株东北红豆杉对象木及980株竞争木的调查,运用Hegyi的单木竞争指数计算分析了东北红豆杉的种内和种间竞争强度。东北红豆杉的种内竞争强度不大,占总竞争的4%。竞争压力更多的来自于种间竞争,占总竞争的96%。与东北红豆杉竞争激烈的树种主要是冷杉、紫椴、色木槭和红松等地带性植被的优势种。随着东北红豆杉胸径的增大,所受到的竞争压力逐渐减小,胸径在20cm以前所受到的竞争压力最大,竞争强度与对象木胸径符合幂函数(CI=AD^-B)关系。  相似文献   

12.
Inter- and intraspecific competitive abilities are significant determinants of invasive success and the ecological impact of non-native plants. We tested two major hypotheses on the competitive ability of invasive species using invasive (Taraxacum officinale) and native (T. platycarpum) dandelions: differential interspecific competitive ability between invasive and native species and the kin recognition of invasive species. We collected seeds from two field sites where the two dandelion species occurred nearby. Plants were grown alone, with kin (plants from the same maternal genotype) or strangers (plants from different populations) of the same species, or with different species in a growth chamber, and the performance at the early developmental stage between species and treatments was compared. The invasive dandelions outcompeted the native dandelions when competing against each other, although no difference between species was detected without competition or with intraspecific competition. Populations of native species responded to interspecific competition differently. The effect of kinship on plant performance differed between the tested populations in both species. A population produced more biomass than the other populations when grown with a stranger, and this trend was manifested more in native species. Our results support the hypothesis that invasive plants have better competitive ability than native plants, which potentially contributes to the establishment and the range expansion of T. officinale in the introduced range. Although kin recognition is expected to evolve in invasive species, the competitive ability of populations rather than kinship seems to affect plant growth of invasive T. officinale under intraspecific competition.  相似文献   

13.
Some ants have an extraordinary unicolonial social organization, whereby individuals mix freely among physically separated nests. Recently, it was shown that the European population of Linepithema humile consisted of two enormous unicolonial supercolonies. Workers of the same supercolony are never aggressive to each other. In contrast, aggressiveness is invariably high between workers from different supercolonies. Here we investigated whether gene flow occurs between two supercolonies. We identified a contact zone in which we sampled 46 nests. For each nest, aggression tests were conducted against workers from reference nests from both supercolonies. Workers were always very aggressive towards workers of one of the supercolonies but not to workers of the other. Thus, all nests could be clearly assigned to one of the two supercolonies. For 22 of the 46 nests, we genotyped 15-16 workers at five microsatellite loci. A four-level hierarchical analysis of variance revealed very strong genetic differentiation between the two supercolonies (F(SUPERCOLONY-TOTAL) = 0.541) and low differentiation between sectors (i.e. group of nests connected together with trails) within supercolonies (F(SECTOR-SUPERCOLONY) = 0.064). The very high differentiation between the two supercolonies indicates a lack of ongoing gene flow, a conclusion further bolstered by the finding that the two supercolonies share no common alleles at two of the five microsatellite loci. A Bayesian clustering method also revealed the occurrence of two distinct clusters. These clusters exactly match the grouping obtained by aggression tests. None of the 332 genotyped individuals were admixed despite the fact that some nests of the two supercolonies were separated by less than 30 m. These results demonstrate that the two supercolonies have completely separate gene pools.  相似文献   

14.
The success of invasive ants is frequently attributed to genetic and behavioural shifts in colony structure during or after introduction. The Argentine ant ( Linepithema humile ), a global invader, differs in colony genetic structure and behaviour between native populations in South America and introduced populations in Europe, Japan, New Zealand and North America. However, little is known about its colony structure in Australia. We investigated the genetic structure and behaviour of L. humile across Melbourne, Victoria by quantifying variation at four microsatellite loci and assaying intraspecific aggression at neighbourhood (30–200 m), fine (1–3.3 km) and regional (5–82 km) spatial scales. Hierarchical analyses across these scales revealed that most genetic variation occurred among workers within nests (∼98%). However, although low genetic differentiation occurred among workers between nests at the fine and regional scales (∼2%), negligible differentiation was detected among workers from neighbouring nests. Spatial genetic autocorrelation analysis confirmed that neighbouring nests were genetically more similar to each other. Lack of aggression within and across these scales supported the view that L. humile is unicolonial and forms a large supercolony across Melbourne. Comparisons of genetic structure of L. humile among single nests sampled from Adelaide, Brisbane, Hobart and Perth with Melbourne showed no greater levels of genetic differentiation or dissimilar spatial structure, suggesting an Australia-wide supercolony.  相似文献   

15.
Invasive species are one of the main sources of the ongoing global loss of biodiversity. Invasive ants are known as particularly damaging invaders and their introductions are often accompanied by population-level behavioural and genetic changes that may contribute to their success. Anoplolepis gracilipes is an invasive ant that has just recently received increased attention due to its negative impact on native ecosystems. We examined the behaviour and population structure of A. gracilipes in Sabah, Malaysia. A total of 475 individuals from 24 colonies were genotyped with eight microsatellite markers. Intracolonial relatedness was high, ranging from 0.37 to 1 (mean +/- SD: 0.82 +/- 0.04), while intercolonial relatedness was low (0.0 +/- 0.02, range -0.5-0.76). We compared five distinct sampling regions in Sabah and Brunei. A three-level hierarchical F-analysis revealed high genetic differentiation among colonies within the same region, but low genetic differentiation within colonies or across regions. Overall levels of heterozygosity were unusually high (mean H(O) = 0.95, mean H(E) = 0.71) with two loci being entirely heterozygous, indicating an unusual reproductive system in this species. Bioassays revealed a negative correlation between relatedness and aggression, suggesting kinship as one factor facilitating supercolony formation in this species. Furthermore, we genotyped one individual per nest from Sabah (22 nests), Sarawak (one nest), Brunei (three nests) and the Philippines (two nests) using two mitochondrial DNA markers. We found six haplotypes, two of which included 82.1% of all sequences. Our study shows that the sampled area in Sabah consists of a mosaic of differently interrelated nests in different stages of colony establishment. While some of the sampled colonies may belong to large supercolonies, others are more likely to represent recently introduced or dispersed propagules that are just beginning to expand.  相似文献   

16.
In this paper, we examine the hypothesis that reduced intraspecific aggression underlies the competitive prowess of Argentine ants in their introduced range. Specifically, we test three predictions of this hypothesis by comparing the genetic diversity, behavior, and ecology of Argentine ants in their native range to introduced populations. Differences between native and introduced populations of Argentine ants were consistent with our predictions. Introduced populations of the Argentine ant appear to have experienced a population bottleneck at the time of introduction, as evidenced by much reduced variation in polymorphic microsatellite DNA markers. Intraspecific aggression was rare in introduced populations but was common in native populations. Finally, in contrast to the Argentine ant's ecological dominance throughout its introduced range, it did not appear dominant in the native ant assemblages studied in Argentina. Together these results identify a possible mechanism for the widespread success of the Argentine ant in its introduced range.  相似文献   

17.
Native supercolonies of unrelated individuals in the invasive Argentine ant   总被引:6,自引:0,他引:6  
Kinship among group members has long been recognized as a main factor promoting the evolution of sociality and reproductive altruism, yet some ants have an extraordinary social organization, called unicoloniality, whereby individuals mix freely among physically separated nests. This type of social organization is not only a key attribute responsible for the ecological dominance of these ants, but also an evolutionary paradox because relatedness between nestmates is effectively zero. Recently, it has been proposed that, in the Argentine ant, unicoloniality is a derived trait that evolved after its introduction into new habitats. Here we test this basic assumption by conducting a detailed genetic analysis of four native and six introduced populations with five to 15 microsatellite loci and one mitochondrial gene. In contrast to the assumption that native populations consist of family-based colonies with related individuals who are aggressive toward members of other colonies, we found that native populations also form supercolonies, and are effectively unicolonial. Moreover, just as in introduced populations, the relatedness between nestmates is not distinguishable from zero in these native range supercolonies. Genetic differentiation between native supercolonies was very high for both nuclear and mitochondrial markers, indicating extremely limited gene flow between supercolonies. The only important difference between the native and introduced populations was that supercolonies were several orders of magnitude smaller in the native range (25-500 m). This size difference has important consequences for our understanding of the evolution and stability of unicolonial structures because the relatively small size of supercolonies in the native range implies that competition can occur between supercolonies, which can act as a break on the spread of selfish mutants by eliminating supercolonies harboring them.  相似文献   

18.
Summary Introduced populations of many invasive ants exhibit low levels of intraspecific aggression. Argentine ants (Linepithema humile), for example, maintain expansive supercolonies in many parts of their introduced range. Recent studies demonstrate that variation in nestmate recognition in L. humile can derive from both environmental and genetic sources. In some ants, pheromones emitted by queens also influence nestmate-recognition behavior. To test if such a phenomenon occurs in Argentine ants, we examined whether levels of intraspecific aggression vary as a function of queen presence or absence in experimental lab colonies. For each of four known supercolonies from southwestern California, we set up a pair of experimental colonies and randomly assigned replicates within each pair to treatment (queen removal) and control (no queen removal) groups. Using two different behavioral assays, we then measured aggressive behavior for ten days, removed queens from colonies in the treatment group, and continued to monitor aggression in both experimental groups for an additional 65 days. Both assays yielded qualitatively similar results: intraspecific aggression remained high throughout the experiment in both experimental groups. These results suggest that L. humile queens fail to influence levels of intraspecific aggression in introduced populations.Received 2 June 2003; revised 1 September 2003; accepted 18 September 2003.  相似文献   

19.
Populations of the desert seed-harvesting ant Pheidole xerophylla are often characterized by high nest density leading to competitive interactions between foragers from different nests. We investigated the inter-nest aggression, spatial distribution and genetic structure of a P. xerophylla population of the Mojave Desert in Southern California. Inter-nest aggression was quantified by standardized staged encounters in a neutral arena. Genetic relatedness within nests and relatedness between nests were calculated using allelic frequencies at four microsatellite-DNA loci. We found a bimodal distribution of inter-colony aggression levels with a first mode at low aggression levels and another mode at much higher aggression levels. Inter-colony aggression levels were largely non-transitive. No effect of geographical distance on inter-nest aggression levels was detected. Despite high amounts of variation in inter-colony relatedness ( − 0.24 to 0.37) this variable did not correlate with the level of aggression between nests. Intra-nest relatedness ranged from 0.40 to 0.75 and close inspection of worker genotypes within colonies revealed a high proportion of polygynous colonies or a mixture of polygyny and polyandry. Aggression levels among nests was found to decrease with increasing intra-nest relatedness. These results do not support the idea that aggression is modulated by a nestmate recognition mechanism based on overall genetic similarity. Instead, the absence of transitivity found in inter-colony aggression and bimodal distribution of aggression levels are compatible with a common label acceptance model of nestmate recognition and suggest that label diversity may be encoded by a limited number of loci. Received 29 March 2005; revised 8 September 2005; accepted 27 September 2005.  相似文献   

20.
Ants are some of the most abundant and ecologically successful terrestrial organisms, and invasive ants rank among the most damaging invasive species. The Argentine ant is a particularly well-studied invader, in part because of the extreme social structure of introduced populations, known as unicoloniality. Unicolonial ants form geographically vast supercolonies, within which territorial behaviour and intraspecific aggression are absent. Because the extreme social structure of introduced populations arises from the widespread acceptance of conspecifics, understanding how this colonymate recognition occurs is key to explaining their success as invaders. Here, we present analyses of Argentine ant recognition cues (cuticular hydrocarbons) and population genetic characteristics from 25 sites across four continents and the Hawaiian Islands. By examining both hydrocarbon profiles and microsatellite genotypes in the same individual ants, we show that native and introduced populations differ in several respects. Both individual workers and groups of nestmates in the introduced range possess less diverse chemical profiles than ants in the native range. As previous studies have reported, we also find that introduced populations possess much lower levels of genetic diversity than populations in the native range. Interestingly, the largest supercolonies on several continents are strikingly similar to each other, suggesting that they arose from a shared introduction pathway. This high similarity suggests that these geographically far-flung ants may still recognize and accept each other as colonymates, thus representing distant nodes of a single, widely distributed supercolony. These findings shed light on the behaviour and sociality of these unicolonial invaders, and pose new questions about the history and origins of introduced populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号