首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 μg/kg bolus, then 2 μg/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

2.
Gastric ulcerogenicity and depletion of endogenous prostaglandins (PGs) content induced by tiaprofenic acid, dicrofenac and indomethacin were examined using the same antiinflammatory effective doses. Male Wistar rats were given each of these drugs intragastrically 24, 18, and 3 hrs before sacrifice in the following doses (mg/kg): indomethacin (0.8, 4 and 20); tiaprofenic acid (1.2, 6 and 30); dicrofenac (0.8, 4 and 20). Endogenous prostacyclin (PGI2) and PGE2 in fundic mucosa were determined by radioimmunoassay. The three compounds produced fundic mucosal lesions in a dose-dependent manner. However, tiaprofenic acid and dicrofenac were both less potent than indomethacin in producing gastric mucosal lesions at similar antiinflammatory doses. Mucosal PGE2 content was abolished by the three compounds in the following doses (mg/kg): indomethacin (4 and 20); tiaprofenic acid (6 and 30); dicrofenac (20). Mucosal PGI2 was maintained around 50% of the control value in rats given tiaprofenic acid in a dose of 6 mg/kg or dicrofenac in a dose of 4 mg/kg, while indomethacin in a dose of 4 mg/kg markedly reduced mucosal PGI2 to 17% of the control value. In larger doses, tiaprofenic acid and dicrofenac were also significantly less potent in reducing mucosal PGI2 than indomethacin. These results suggest that the difference in ulcerogenicity between indomethacin and the other two compounds was closely related to their potency in decreasing PGI2 in the gastric (fundic) mucosa.  相似文献   

3.
Prostaglandins (PG) derived from COX-1 play an important role in the maintenance of mucosal integrity but the role of COX-2-derived products in mucosal defence mechanism has not been fully explained. Mild stress is known to prevent gastric mucosal lesions induced by severe stress via the phenomenon of adaptive cytoprotection but it remains unknown which COX is involved in this adaptation. In this study, the mucosal expression of COX-1 and COX-2 was examined and the inhibitors of these enzymes were used to determine the contribution of these enzymes in adaptive cytoprotection induced by mild stress. Male Wistar rats were exposed to mild water immersion and restraint stress (WRS) at various time intervals ranging from 5 min up to 2 h followed 1 h later by exposure to severe 3.5 h WRS with or without pretreatment with: 1) NS-398 (10 mg x kg(-1) i.g.), a selective COX-2 inhibitor; 2) resveratrol (5 mg x kg(-1) i.g.), a selective COX-1 inhibitor; 3) meloxicam (2 mg x kg(-1) i.g.), preferential COX-2 inhibitor; and 4) indomethacin (5 mg x kg(-1) i.p), non-selective inhibitor of COX. The number of WRS lesions was counted, gastric blood flow (GBF) was measured by H2-gas clearance technique, mucosal biopsy samples were taken for the assessment of PGE2 by radioimmunoassay, and the expression of COX-1 and COX-2 mRNA by RT-PCR. WRS for 3.5 h produced numerous gastric lesions, decreased GBF by 48% and inhibited formation of PGE2 by 68% as compared to intact mucosa. Exposure to mild WRS during 5-30 min by itself failed to affect mucosal integrity but significantly attenuated gastric lesions induced by exposure to severe 3.5 h stress; the maximal protective effect being achieved with mild WRS during 15 min. This protective effect was accompanied by the rise in GBF and the generation of PGE2 in the gastric mucosa. After extension of mild WRS from 15 min up to 1 or 2 h before more severe 3.5 h WRS, the loss of cytoprotective effect of mild WRS against severe stress accompanied by significant fall in the GBF were observed. Pretreatment with NS-398 (10 mg x kg(-1) i.g.) that failed to affect mucosal PGE2 generation, reduced significantly the protection and accompanying rise in GBF produced by mild WRS whereas resveratrol partly reduced the protection and the rise in GBF induced by mild WRS. Meloxicam or indomethacin significantly inhibited PGE2 generation and completely abolished the hyperemia and protection induced by mild WRS against more severe stress. The protective and hyperemic effects of mild WRS were completely restored by the addition of 16,16 dm PGE2 (5 microg x kg(-1) i.g.) to NS-398 or resveratrol, while the deleterious effects of meloxicam and indomethacin were significantly attenuated by the concomitant treatment with this PGE2 analogue. We conclude that PG derived from both, COX-1 and COX-2 appear to be involved in adaptive cytoprotection developed in response to mild stressors.  相似文献   

4.
Conscious adult ewes prepared with nonocclusive indwelling vascular catheters were used to determine the mechanism by which heart rate increases during central administration of prostaglandin E2 (PGE2). Heart rate increased 14 bpm during steady-state intracarotid infusion of PGE2, 10 ng/kg/min (P less than 0.05). Intravenous atropine methyl bromide, 1 mg/kg, increased heart rate 26 bpm (P less than 0.05) 5 min after injection. Heart rate remained elevated 30 min after injection. The heart rate response to PGE2 plus atropine was greater than the heart rate response to either atropine or PGE2 alone (P less than 0.05). Propranolol, 1 mg/kg bolus plus intravenous infusion, 0.025 mg/kg/min, did not change resting heart rate. Propranolol attenuated but did not abolish the increase in heart rate caused by intracarotid PGE2. Although heart rate increased in response to PGE2 after administration of either propranolol or atropine alone, the combination of propranolol and atropine prevented any further increase in heart rate during subsequent PGE2 infusion. The increase in heart rate when all three drugs were given together was not different from the increase observed during atropine alone. Thus, both beta-adrenergic activation and muscarinic deactivation contribute to the PGE2-induced tachycardia.  相似文献   

5.
Gastrointestinal ulcerogenic effect of indomethacin is causally related with an endogenous prostaglandin (PG) deficiency, yet the detailed mechanism remains unknown. We examined the effect of various PGE analogues specific to EP receptor subtypes on these lesions in rats and mice, and investigated which EP receptor subtype is involved in the protective action of PGE(2). Fasted or non-fasted animals were given indomethacin s.c. at 35 mg/kg for induction of gastric lesions or 10-30 mg/kg for intestinal lesions, and they were killed 4 or 24 h later, respectively. Various EP agonists were given i.v. 10 min before indomethacin. Indomethacin caused hemorrhagic lesions in both the stomach and intestine. Prior administration of 16,16-dimethyl PGE(2) (dmPGE(2)) prevented the development of damage in both tissues, and the effect in the stomach was mimicked by 17-phenyl PGE2 (EP1), while that in the small intestine was reproduced by ONO-NT-012 (EP3) and ONO-AE-329 (EP4). Butaprost (EP2) did not have any effect on either gastric or intestinal lesions induced by indomethacin. Similar to the findings in rats, indomethacin caused gastric and intestinal lesions in both wild-type and knockout mice lacking EP1 or EP3 receptors. However, the protective action of dmPGE(2) in the stomach was observed in wild-type and EP3 receptor knockout mice but not in mice lacking EP1 receptors, while that in the intestine was observed in EP1 knockout as well as wild-type mice but not in the animals lacking EP3 receptors. These results suggest that indomethacin produced damage in the stomach and intestine in a PGE(2)-sensitive manner, and exogenous PGE(2) prevents gastric and intestinal ulcerogenic response to indomethacin through different EP receptor subtypes; the protection in the stomach is mediated by EP1 receptors, while that in the intestine mediated by EP3/EP4 receptors.  相似文献   

6.
Regulation of prostaglandin production in cultured gastric mucosal cells   总被引:3,自引:0,他引:3  
The aims of this study were to investigate whether exogenous prostaglandin modulates prostaglandin biosynthesis by cultured gastric mucosal cells, and to clarify the role of cyclic nucleotides in the possible modulation of prostaglandin production. After pretreatment for 30 min with buffer alone (control) or 1 to 100ng/ml PGE2, cells were incubated with 4 uM arachidonic acid for 30 min. Pretreatments with greater than 5ng/ml PGE2 inhibited arachidonate-induced PGE2 and PGI2 production in a dose-dependent fashion, as compared with control, with inhibition by 64 +/- 8% and 75 +/- 4% respectively, at 100ng/ml PGE2. PGE2, at 100ng/ml, significantly increased intracellular cAMP accumulation, but pretreatment with dibutyryl cAMP (0.01-mM) did not alter the amounts of arachidonate-induced PGE2 production. Furthermore, while greater than 10ng/ml PGE2 increased cGMP production dose-dependently, preincubation with dibutyryl cGMP (0.001-0.1mM) also failed to affect PGE2 synthesis significantly. In addition, pretreatment with isobutyl-methyl-xanthine, while increasing accumulation of cellular cyclic nucleotides, did not significantly change PGE2 production. Calcium ionophore A23187-induced PGE2 production was also inhibited by pretreatment with PGE2. These results indicate that exogenous PG inhibits subsequent arachidonate or A23187-induced PG biosynthesis in rat gastric mucosal cells, and suggest the possibility that PG regulates its own biosynthesis via feedback inhibition independent of cyclic nucleotides in these cells.  相似文献   

7.
The effects of indomethacin on the ethanol-induced suppression of fetal breathing movements and fetal arterial plasma and cerebrospinal fluid (CSF) PGE2 concentrations and maternal arterial plasma PGE2 concentration were determined in the near-term fetal lamb. Eight conscious instrumented pregnant ewes (between 130 and 133 days of gestation; term, 147 days) received 1-h maternal intravenous infusion of 1 g ethanol/kg total body weight, and the fetus received 6-h intravenous infusion of indomethacin (1 mg/h per kg fetal body weight) commencing 30 min later. Serial fetal and maternal arterial blood samples (n = 8) and fetal CSF samples (n = 5) were collected at selected times throughout the 12-h study for the determination of PGE2 concentration. Fetal breathing movements were monitored continuously throughout the experimental period. Maternal ethanol infusion resulted in initial suppression (P less than 0.05) of fetal breathing movements for 2 h below pretreatment value, followed by a rapid increase in the incidence of fetal breathing movements after the onset of fetal indomethacin treatment. Fetal and maternal plasma PGE2 concentrations and fetal CSF PGE2 concentration were increased (P less than 0.05) above the pre-infusion value during the administration of ethanol and 1 h thereafter. Fetal indomethacin treatment suppressed (P less than 0.05) to undetectable levels fetal plasma and CSF PGE2 concentrations, which then became similar (P greater than 0.05) to pretreatment by 12 h. There was a positive correlation between fetal plasma and CSF PGE2 concentrations. There was an inverse correlation between the incidence of fetal breathing movements and fetal CSF PGE2 concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Gastric ulcerogenicity and depletion of endogenous prostaglandins (PGs) content induced by tiaprofenic acid, dicrofenac and indomethacin were examined using the same antiinflammatory effective doses. Male Wistar rats were given each of these drugs intragasrically 24, 18, and 3 hrs before sacrifice in the following doses (mg/kg): indomethacin (0.8, 4 and 20); tiaprofenic acid (1.2, 6 and 30); dicrofenac (0.8, 4 and 20). Endogenous prostacyclin (PGI2) and PGE2 in fundic mucosa were determined by radioimmunoassay. The three compounds produced fundic mucosal lesions in a dose-dependent manner. However, tiaprofenic acid and dicrofenac were both less potent than indomethacin in producing gastric mucosal lesions at similar antiinflammatory doses. Mucosal PGE2 content was abolished by the three compounds in the following doses (mg/kg): indomethacin (4 and 20); tiaprofenic acid (6 and 30); dicrofenac (20). Mucosal PGI2 was maintained around 50% of the control value in rats given tiaprofenic acid in a dose of 6 mg/kg or dicrofenac in a dose of 4 mg/kg, while indomethacin in a dose of 4 mg/kg markedly reduced mucosal PGI2 to 17% of the control value. In larger doses, tiaprofenic acid and dicrofenac were also significantly less potent in reducing mucosal PGI2 than idomethacin. These results suggest that the difference in ulcerogenicity between idomethacin and the other two compounds was closely related to their potency in decreasing PGI2 in the gastric (fundic) mucosa.  相似文献   

9.
The binding of 3H-prostaglandin E2 (PGE2) to rabbit gastric mucosa was investigated. Binding depended on incubation time, temperature and pH, and was saturable and reversible. Scatchard plot analysis revealed a single class of binding sites with a dissociation constant (Kd) of 5.33 +/- 0.21 nM and a maximum number of binding sites (Bmax) of 138.1 +/- 3.4 fmol/mg protein. PGE1 and 16,16-dimethyl PGE2 potently competed with 3H-PGE2 for the binding sites of gastric mucosa, whereas PGA2, PGF2 alpha, 6-keto PGF1 alpha and thromboxane B2 were less potent. The gastric mucosa prepared from the rabbits given indomethacin (5 mg/kg s.c. three times) showed a lower Kd (2.47 +/- 0.19 nM) for 3H-PGE2 than that from untreated one. Treatment with a PGE1 analog, misoprostol (320 micrograms/kg s.c. three times) lowered the Bmax to 74.1 +/- 2.4 fmol/mg protein without any significant effect on the Kd value. It is concluded that rabbit gastric mucosa has specific binding sites for 3H-PGE2 which may be modulated by the levels of PGs in vivo.  相似文献   

10.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 mug/kg) or by continuous infusion (1.0 mug/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PFE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic beta-oxidation of the carboxylic side chain.  相似文献   

11.
A study was performed to examine the role of prostaglandins (PGs) in the mechanism of the ethanol-induced suppression of FBM, in which the objective was to test the hypothesis that fetal administration of PGE2 can suppress the incidence of FBM following reversal of ethanol-induced suppression of FBM by indomethacin, a fatty acid cyclooxygenase inhibitor. Instrumented near-term pregnant ewes received 1-h maternal infusion of ethanol (1 g/kg maternal body weight) followed 0.5 h later by a 3-h fetal infusion of indomethacin (1 mg/kg fetal body weight/h), and then a 2-h fetal infusion of PGE2 (400 ng/kg fetal body weight/min). Prior to drug administration, FBM occurred approximately 36.1 +/- 2.6% of the time. FBM were suppressed during the period of ethanol infusion (9.6 +/- 1.7%); the ethanol-induced suppression of FBM was reversed by fetal indomethacin treatment (77.5 +/- 14.1%); shortly after the onset of fetal PGE2 infusion, the incidence of FBM decreased to a 2-h mean incidence of 14.1 +/- 4.2%, which was similar in magnitude to that observed after maternal ethanol infusion. After the completion of PGE2 infusion, the incidence of FBM rapidly increased to a peak incidence of 83.4 +/- 19.2%, which was indicative of a prolonged effect of indomethacin on FBM. The data indicate that PGs mediate the ethanol-induced suppression of ovine FBM and that the action of indomethacin to antagonize ethanol-induced suppression of FBM is primarily due to its inhibition of PG synthesis.  相似文献   

12.
The concept of cytoprotection has been applied to many tissues afforded protection by drugs or endogenous chemicals against organelle, cyto- or histopathologic damage. We review here the "organoprotection" by lidocaine in rats and dogs as appraised by in vitro, ex vivo, and in vivo experiments with the stomach and heart, and as revealed at organelle to organ functional levels. Gastric mucosal lesions induced by 80% ethanol with 100 mM HCl on the ex vivo rat stomach were significantly reduced by lidocaine (2.2-4.4 mg/kg bolus followed by 66-132 micrograms/kg/min i. v. infusion). In anesthetized dogs with gastric corporeal lesions induced by increased gastric intraluminal pressure (50 mm Hg, 2.5 hrs), lidocaine (2.2 mg/kg bolus plus 66 micrograms/kg/min infusion) significantly reduced lesion severity. In the isolated rat heart, reperfusion after a 60 min period of ischemia induced localized cardiac mitochondrial swelling and disruption in ventricular apices which was greatly reduced if hearts were pretreated (15 min perfusion with lidocaine). In intact rats subjected to hemorrhagic shock, lidocaine pretreatment also facilitated shock resuscitation and reduced ultrastructural damage. In these diverse experiments, lidocaine organoprotection was likely mediated in part through reduction of ischemia induced organelle membrane damage and through reduction of reperfusion-induced superoxide and other oxygen-derived free radical related damage.  相似文献   

13.
The effect of sofalcone, an anti-ulcer agent, on gastric mucosal prostaglandin (PG) metabolism was studied. Gastric mucosal PGE2 was determined in rats in which PGE2 synthesis was inhibited by preadministration of indomethacin. Oral administration of sofalcone at doses of 200 and 400 mg/kg significantly inhibited the PG metabolizing enzyme, 15-hydroxy-PG-dehydrogenase (15-OH-PG-DH) activity and increased PGE2 contents in the rat gastric mucosa. The inhibition of 15-OH-PG-DH activity was accompanied by an increase of PGE2 contents up to 6 hours after the administration of sofalcone. These changes, however, were not observed 12 hours after its administration. Intraperitoneally administered sofalcone also inhibited 15-OH-PG-DH activity and increased PGE2 content. The inhibition of 15-OH-PG-DH activity by sofalcone was noncompetitive and uncompetitive against substrates NAD and PGE1, respectively. These results suggest that the increase of the gastric PGE2 level is mainly due to the inhibition of 15-OH-PG-DH activity, and this increase in PGE2 may be involved in the anti-ulcer effect of sofalcone.  相似文献   

14.
We demonstrated that prostaglandin (PG) E2 aggravates gastric mucosal injury caused by histamine in rats, and investigated using various EP agonists which EP receptor subtype is involved in this phenomenon. Rats were used after 18 hr fasting. Histamine (80 mg/kg) dissolved in 10% gelatin, was given s.c., either alone or in combination with i.v. administration of PGE2 or various EP agonists such as 17-phenyl PGE2 (EP1), butaprost (EP2), sulprostone (EP1/EP3), ONO-NT012 (EP3) and ONO-AE1-329 (EP4). The animals were killed 4 hr later, and the mucosa was examined for lesions. The mucosal permeability was determined using Evans blue (1%). Histamine alone induced few lesions in the gastric mucosa within 4 hr. PGE2 dose-dependently worsened the lesions induced by histamine, the response being inhibited by tripelennamine but not cimetidine. The effect of PGE2 was mimicked by 17-phenyl PGE2 and sulprostone, but not other EP agonists, including EP2, EP3, and EP3/EP4 agonists. The mucosal vascular permeability was slightly increased by histamine, and this response was markedly enhanced by co-administration of 17-phenyl PGE2 as well as PGE2. The mucosal ulcerogenic and vascular permeability responses induced by histamine plus PGE2 were both suppressed by pretreatment with ONO-AE829, the EP1 antagonist. These results suggest that PGE2 aggravates histamine-induced gastric mucosal injury in rats. This action of PGE2 is mediated by EP1 receptors and functionally associated with potentiation of the increased vascular permeability caused by histamine through stimulation of H1-receptors.  相似文献   

15.
Neutrophil infiltration mediated by TNF-alpha is associated with various types of gastric injury, whereas PGs play a crucial role in gastric defense. We examined roles of two isoforms of cyclooxygenase (COX) and PGE2 in Helicobacter pylori-induced gastritis in mice. Mice infected with H. pylori were given selective COX-1 inhibitor SC-560 (10 mg/kg), selective COX-2 inhibitor NS-398 (10 mg/kg), or nonselective COX inhibitor indomethacin (2 mg/kg) with or without 16,16-dimethyl PGE2 for 1 wk. H. pylori infection increased levels of mRNA for COX-1 and -2 in gastric tissue by 1.2-fold and 3.3-fold, respectively, accompanied by a significant increase in PGE2 production by gastric tissue. H. pylori infection significantly elevated MPO activity, a marker of neutrophil infiltration, and epithelial cell apoptosis in the stomach. SC-560 augmented MPO activity and epithelial cell apoptosis with associated reduction in PGE2 production, whereas NS-398 had the same effects without affecting PGE2 production. Inhibition of both COX-1 and -2 by indomethacin or concurrent treatment with SC-560 and NS-398 resulted in a stronger increase in MPO activity and apoptosis than inhibition of either COX-1 or -2 alone. H. pylori infection elevated TNF-alpha mRNA expression in the stomach, which was further increased by indomethacin. Effects of COX inhibitors on neutrophil infiltration, apoptosis, and TNF-alpha expression in H. pylori-infected mice were abolished by exogenous 16,16-dimethyl PGE2. In conclusion, PGE2 derived from either COX-1 or -2 is involved in regulation of gastric mucosal inflammation and contributes to maintenance of mucosal integrity during H. pylori infection via inhibition of TNF-alpha expression.  相似文献   

16.
1. The binding characteristics of gastric mucosal prostaglandin (PG) E2 (PGE2) receptor were investigated using mucosal cell membranes from rat stomach. The binding was found to be dependent upon PGE2 and membrane protein concentration, the time of incubation and the pH of the mixture, being highest at pH 3.0. 2. Scatchard analysis of the binding data revealed a curvilinear plot with high affinity binding (Kd = 2 nM; Bmax = 0.106 pmol/mg protein) and low affinity binding (Kd = 319 nM; Bmax = 2.262 pmol/mg protein) sites. 3. Competitive displacement study indicated that the receptor was specific for PGs of the E series, as PGF2 alpha and 6-keto-PGF1 alpha failed to displace the PGE2. 4. The study is the first report to provide biochemical parameters of specific PGE receptors in rat gastric mucosa.  相似文献   

17.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100 ng/min) and PGE2 (3 ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 +/- 6 to 393 +/- 74 uEq/min during PGE2, and further increased to 511 +/- 52 uEq/min during LTD4 + PGE2. No change occurred in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 +/- 14 to 260 +/- 66 uEq/min, and only rose from 80 +/- 10 to 175 +/- 19 uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 +/- 0.25 to 4.70 +/- 0.30 ml/min, while urinary volume was increasing from 3.55 +/- 0.25 to 10.05 +/- 0.65 ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3 mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occurred in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

18.
The effects of prostaglandin E1 (PGE1) and prostaglandin F1 alpha (PGF1 alpha) were studied on perfused rat hearts and isolated rat atria. Both PGE1 and PGF1 alpha produced dose-dependent increases in right atrial rate but had no effect on left atrial tension development. PGE1 (10(-4) M) increased right atrial cyclic AMP content without changing phosphorylase a activity. PGF1 alpha (10(-4) M) did not change right atrial cyclic AMP or cyclic GMP content. Both prostaglandins had no effect on left atrial cyclic nucleotide content. When infused at a rate of 1 microgram/min, PGE1 produced a time-dependent increase in cyclic AMP content in the Langendorff perfused hearts but did not alter contractile force development or phosphorylase a activity. An infusion of PGF1 alpha produced a dose-dependent increase in tension development which was secondary to a negative chronotropic effect. PGF1 alpha (1 microgram/min) did not produce any changes in cyclic nucleotide levels or phosphorylase a activity in the Langendorff perfused hearts. These results show that PGE1 can selectively increase myocardial cyclic AMP content without altering contractile force or phosphorylase activity and that PGF1 alpha does not increase rat cardiac AMP levels.  相似文献   

19.
Y Waisman  H Marcus  M Ligumski  G Dinari 《Life sciences》1991,48(21):2035-2042
We studied the effect of parenteral morphine and naloxone administration on intestinal mucosal Prostaglandin E2 (PGE2) and 3',5' cyclic adenosine monophosphate (cAMP) levels and on indomethacin-induced intestinal ulceration in the rat. Compared to the control group, morphine significantly decreased whereas naloxone markedly increased both PGE2 and cAMP mucosal levels, respectively. Morphine or naloxone alone did not cause mucosal injury. However, when given with indomethacin, morphine significantly potentiated the ulcerogenic effect of indomethacin while naloxone exerted a protective effect. These results suggest that opioid peptides may play a role in modulation of intestinal mucosal PGE2 and cAMP levels. In addition, enhancement of indomethacin-induced ulcer formation by morphine and amelioration by naloxone might be in part mediated through their effect on mucosal PGE2 and cAMP levels.  相似文献   

20.
The effect of prostaglandin E1 (PGE1) on plasma renin activity (PRA) and plasma aldosterone concentration (PAC) was studied in the hypertensive subjects treated with or without 75 mg indomethacin or 60 mg propranolol for a week. Subsequent to the treatment with indomethacin for a week, PRA and PAC levels were decreased as compared to the control, without changes in the blood pressure and heart rate. During the infusion of PGE1, the blood pressure was decreased and the pulse rate was increased. PRA and PAC levels were also elevated. These changes of parameters were not different between the control and the indomethacin-treated subjects. PRA and PAC were suppressed after the treatment with propranolol. With the infusion of PGE1, the level of PRA was not significantly elevated, while, PAC was significantly increased by the infusion of 100 ng/Kg/min of PGE1. During the infusion of PGE1, the blood pressure was decreased while the pulse rate was increased in the subjects treated with propranolol. However, the elevation of the pulse rate was less remarkable than the control. These data indicate that PGE1 have important roles in the regulation of the release of renin and aldosterone. These findings also suggest that PGE1 may act to stimulate the secretion of aldosterone in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号