首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation. Overexpression of Bcl-2 significantly protected cells from oxygen-induced apoptosis, as shown by measurement of lactate dehydrogenase release, quantification of apoptotic nuclei, and detection of Annexin-V-positive cells. Bcl-2 partially prevented mitochondrial damage and interfered with the mitochondrial proapoptotic signaling pathway: it reduced Bax translocation to mitochondria, decreased the release of cytochrome c, and inhibited caspase 3 activation. However, treatment with the caspase inhibitor Z-VAD.fmk failed to rescue the cells from death, indicating that protection provided by Bcl-2 was due not only to caspase inhibition. Bcl-2 also prevented the release of mitochondrial apoptotic inducing factor, a mediator of caspase-independent apoptosis, correlating with the absence of oligonucleosomal DNA fragmentation. In addition, Bcl-2-overexpressing cells showed significantly higher intracellular amounts of glutathione after 72 h of oxygen exposure. In conclusion, our results demonstrate that the overexpression of Bcl-2 is able to prevent hyperoxia-induced cell death, by affecting mitochondria-dependent apoptotic pathways and increasing intracellular antioxidant compounds.  相似文献   

2.
The interaction of mitochondria with proapoptotic proteins activates apoptosis pathways. Previous findings have identified ganglioside GD3 (GD3) as an emerging apoptotic lipid intermediate that targets mitochondria in response to death signals. Using immunoelectron and laser scanning confocal microscopy, we characterize the trafficking of GD3 to mitochondria in response to tumor necrosis factor-alpha (TNF-alpha) in rat hepatocytes. In control hepatocytes, GD3 is present predominantly at the plasma membrane as well as in the endosomal/Golgi network, as verified by its colocalization with the asialoglycoprotein receptor. Following TNF-alpha exposure, GD3 undergoes a rapid cellular redistribution with a gradual loss from the plasma membrane before its colocalization with mitochondria. This process is mimicked by acidic sphingomyelinase and ionizing radiation but not by neutral sphingomyelinase or staurosporin. TNF-alpha stimulated the colocalization of GD3 with early and late endosomal markers, Rab 5 and Rab 7, whereas perturbation of plasma membrane cholesterol or actin cytoskeleton or inhibition of glucosylceramide synthase prevented the trafficking of GD3 to mitochondria. Finally, prevention of the TNF-alpha-stimulated neosynthesis of GD3, cyclosporin A, and latrunculin A or filipin protected sensitized hepatocytes from TNF-alpha-mediated cell death. Thus, the intracellular redistribution and mitochondrial targeting of GD3 during TNF-alpha signaling occurs through actin cytoskeleton vesicular trafficking and contributes to TNF-alpha-mediated hepatocellular cell death.  相似文献   

3.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

4.
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell.  相似文献   

5.
6.
Ganglioside GD3 sensitizes human hepatoma cells to cancer therapy   总被引:7,自引:0,他引:7  
Ganglioside GD3 (GD3) has emerged as a modulator of cell death pathways due to its ability to interact with mitochondria and disable survival pathways. Because NF-kappaB activation contributes to cancer therapy resistance, this study was undertaken to test whether GD3 modulates the response of human hepatoblastoma HepG2 cells to radio- and chemotherapy. NF-kappaB was activated in HepG2 cells shortly after therapeutic doses of ionizing radiation or daunorubicin treatment that translated into up-regulation of kappaB-dependent genes. These effects were accompanied by minimal killing of HepG2 cells by either ionizing radiation or daunorubicin. However, GD3 pretreatment blocked the nuclear translocation of active kappaB members, without effect on Akt phosphorylation, induced by either treatment. The suppression of kappaB-dependent gene induction by GD3 was accompanied by enhanced apoptotic cell death caused by these therapies. Furthermore, the combination of GD3 plus ionizing radiation stimulated the formation of reactive species followed by the mitochondrial release of cytochrome c and Smac/Diablo and caspase 3 activation. Pretreatment with cyclosporin A before radiotherapy protected HepG2 cells from the therapeutic combination of GD3 plus ionizing radiation. These findings underscore a key role of mitochondria in the response of tumor cells to cancer therapy and highlight the potential relevance of GD3 to overcome resistance to cancer therapy by combining its dual action as a mitochondria-interacting and NF-kappaB-inactivating agent.  相似文献   

7.
Lipid and glycolipid diffusible mediators are involved in the intracellular progression and amplification of apoptotic signals. GD3 ganglioside is rapidly synthesized from accumulated ceramide after the clustering of death-inducing receptors and triggers apoptosis. Here we show that GD3 induces dissipation of DeltaPsim and swelling of isolated mitochondria, which results in the mitochondrial release of cytochrome c, apoptosis inducing factor, and caspase 9. Soluble factors released from GD3-treated mitochondria are sufficient to trigger DNA fragmentation in isolated nuclei. All these effects can be blocked by cyclosporin A, suggesting that GD3 is acting at the level of the permeability transition pore complex. We found that endogenous GD3 accumulates within mitochondria of cells undergoing apoptosis after ceramide exposure. Accordingly, suppression of GD3 synthase (ST8) expression in intact cells substantially prevents ceramide-induced DeltaPsim dissipation, indicating that endogenously synthesized GD3 induces mitochondrial changes in vivo. Finally, enforced expression of bcl-2 significantly prevents GD3-induced mitochondrial changes, caspase 9 activation, and apoptosis. These results show that mitochondria are a key destination for apoptogenic GD3 ganglioside along the lipid pathway to programmed cell death and indicate that relevant GD3 targets are under bcl-2 control.  相似文献   

8.
Arachidonic acid and, to a smaller extent, oleic acid at micromolar concentrations decreased the mitochondrial membrane potential within AS-30D rat hepatoma cells cultivated in vitro and increased cell respiration. The uncoupling effect of both fatty acids on cell respiration was partly prevented by cyclosporin A, blocker of the mitochondrial permeability transition pore. Arachidonic acid increased the rate of reactive oxygen species (ROS) production, while oleic acid decreased it. Both fatty acids induced apoptotic cell death of AS-30D cells, accompanied by the release of cytochrome c from mitochondria to the cytosol, activation of caspase-3 and association of proapoptotic Bax protein with mitochondria; arachidonic acid being a more potent inducer than oleic acid. Trolox, a potent antioxidant, prevented ROS increase induced by arachidonic acid and protected the cells against apoptosis produced by this fatty acid. It is concluded that arachidonic and oleic acids induce apoptosis of AS-30D hepatoma cells by the mitochondrial pathway but differ in the mechanism of their action: Arachidonic acid induces apoptosis mainly by stimulating ROS production, whereas oleic acid may contribute to programmed cell death by activation of the mitochondrial permeability transition pore.  相似文献   

9.
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death.  相似文献   

10.
The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50-200 microm H(2)O(2) caused the activation of caspase-3 beginning after 2-3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H(2)O(2)-induced caspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H(2)O(2) or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate neurotransmission may exacerbate neuronal loss.  相似文献   

11.
Hypoxia is known to stimulate reactive oxygen species (ROS) generation. Because reduced glutathione (GSH) is compartmentalized in cytosol and mitochondria, we examined the specific role of mitochondrial GSH (mGSH) in the survival of hepatocytes during hypoxia (5% O2). 5% O2 stimulated ROS in HepG2 cells and cultured rat hepatocytes. Mitochondrial complex I and II inhibitors prevented this effect, whereas inhibition of nitric oxide synthesis with Nomega-nitro-L-arginine methyl ester hydrochloride or the peroxynitrite scavenger uric acid did not. Depletion of GSH stores in both cytosol and mitochondria enhanced the susceptibility of HepG2 cells or primary rat hepatocytes to 5% O2 exposure. However, this sensitization was abrogated by preventing mitochondrial ROS generation by complex I and II inhibition. Moreover, selective mGSH depletion by (R,S)-3-hydroxy-4-pentenoate that spared cytosol GSH levels sensitized rat hepatocytes to hypoxia because of enhanced ROS generation. GSH restoration by GSH ethyl ester or by blocking mitochondrial electron flow at complex I and II rescued (R,S)-3-hydroxy-4-pentenoate-treated hepatocytes to hypoxia-induced cell death. Thus, mGSH controls the survival of hepatocytes during hypoxia through the regulation of mitochondrial generation of oxidative stress.  相似文献   

12.
FTY720 has immunosuppressive activity in experimental organ transplantation and shows a prompt and protracted decrease of blood T lymphocytes upon oral administration. The blood lymphocyte decrease in vivo was mainly a result of FTY720-induced apoptosis. However, this apoptotic mechanism is not well understood. We examined the mechanism of FTY720-induced apoptosis in lymphoma. Western blotting and fluorescent caspase-specific substrate revealed that caspase-3 is involved in FTY720-induced apoptosis, whereas caspase-1 is not. Apoptotic cell death was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, suggesting that caspase activation is essential for FTY720-induced apoptosis. FTY720 reduced mitochondrial transmembrane potential and released cytochrome c from the mitochondria of intact cells as well as in a cell-free system even in the presence of Z-VAD-FMK. As these mitochondrial reactions occurred before caspase activation, we concluded that FTY720 directly influences mitochondrial functions. The inhibition of mitochondrial permeability transition by Bcl-2 overexpression or by chemical inhibitors prevented all apoptotic events occurring in intact cells and in a cell-free system. Moreover, using a cell-free system, FTY720 did not directly affect isolated nuclei or cytosol. These results indicate that FTY720 directly affects mitochondria and triggers permeability transition to induce further apoptotic events.  相似文献   

13.
Lethal toxin (LT) from Clostridium sordellii (strain IP82) inactivates in glucosylating the small GTPases Ras, Rap, Ral and Rac. In the present study we show that LT-IP82 induces cell death via an intrinsic apoptotic pathway in the myeloid cell-line HL-60. LT-IP82 was found to disrupt mitochondrial homeostasis as characterized by a decrease in mitochondrial transmembrane potential and cardiolipin alterations, associated with the release of cytochrome c in the cytosol. Time-course studies of caspase activation revealed that caspase-9 and caspase-3 were activated before caspase-8. Moreover, although LT-IP82-induced cell death was abrogated by caspase-inhibitors, these inhibitors did not suppress mitochondrial alterations, indicating that caspase activation occurs downstream of mitochondria. Protection of mitochondria by Bcl-2 overexpression prevented mitochondrial changes as well as apoptosis induction. Furthermore, evidence is provided that LT-IP82-induced apoptosis is not a consequence of cortical actin disorganization, suggesting that Rac inactivation does not initiate the apoptotic process. Cell exposure to LT-IP82 leads to a co-localization of the toxin with a mitochondrial marker within 2 h. Therefore, we suggest that LT-IP82 could act at the mitochondrion level independently of its enzymatic effect on small GTPases.  相似文献   

14.
Doxorubicin induces caspase-3 activation and apoptosis in Jurkat cells but inhibition of this enzyme did not prevent cell death, suggesting that another caspase(s) is critically implicated. Western blot analysis of cell extracts indicated that caspases 2, 3, 4, 6, 7, 8, 9, and 10 were activated by doxorubicin. Cotreatment of cells with the caspase inhibitors Ac-DEVD-CHO, Z-VDVAD-fmk, Z-IETD-fmk, and Z-LEHD-fmk alone or in combination, or overexpression of CrmA, prevented many morphological features of apoptosis but not loss of mitochondrial membrane potential (delta(psi)m), phospatidilserine exposure, and cell death. Western blot analysis of cells treated with doxorubicin in the presence of inhibitors allowed elucidation of the sequential order of caspase activation. Z-IETD-fmk or Z-LEHD-fmk, which inhibit caspase-9 activity, blocked the activation of all caspases studied, lamin B degradation, and the development of apoptotic morphology, but not cell death. All morphological and biochemical features of apoptosis, as well as cell death, were prevented by cotreatment of cells with the general caspase inhibitor Z-VAD-fmk or by overexpression of Bcl-2. Doxorubicin cytotoxicity was also blocked by the protein synthesis inhibitor cycloheximide. Delayed addition of Z-VAD-fmk after doxorubicin treatment, but prior to the appearance of cells displaying a low delta(psi)m, prevented cell death. These results, taken together, suggest that the key mediator of doxorubicin-induced apoptosis in Jurkat cells may be an inducible, Z-VAD-sensitive caspase (caspase-X), which would cause delta(psi)m loss, release of apoptogenic factors from mitochondria, and cell death.  相似文献   

15.
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.  相似文献   

16.
Bax is a member of the Bcl-2 family of proteins known to regulate mitochondria-dependent programmed cell death. Early in apoptosis, Bax translocates from the cytosol to the mitochondrial membrane. We have identified by confocal and electron microscopy a novel step in the Bax proapoptotic mechanism immediately subsequent to mitochondrial translocation. Bax leaves the mitochondrial membranes and coalesces into large clusters containing thousands of Bax molecules that remain adjacent to mitochondria. Bak, a close homologue of Bax, colocalizes in these apoptotic clusters in contrast to other family members, Bid and Bad, which circumscribe the outer mitochondrial membrane throughout cell death progression. We found the formation of Bax and Bak apoptotic clusters to be caspase independent and inhibited completely and specifically by Bcl-X(L), correlating cluster formation with cytotoxic activity. Our results reveal the importance of a novel structure formed by certain Bcl-2 family members during the process of cell death.  相似文献   

17.
We have previously shown that 25-hydroxycholesterol (25-OHC) treated CHO-K1 cells could be used as a model to investigate the signaling pathway of apoptosis induced by oxidized LDL in vascular cells. In the present study, we examine the execution phase of the apoptotic pathway in CHO-K1 cell death induced by 25-OHC. Oxysterol-induced apoptosis in CHO-K1 was accompanied by caspase activation and was preceded by mitochondrial cytochrome c release. The addition of a competitive caspase-3 inhibitor, Ac-DEVD-CHO, prevented 25-OHC-induced apoptotic cell death. Furthermore, immunoblot analysis showed that 25-OHC treatment induced the degradation of poly(ADP-ribose) polymerase (PARP)-a substrate for caspase 3 and a key enzyme involved in genome surveillance and DNA repair. Thus, we could demonstrate in CHO-K1 cells that 25-OHC activates the apoptotic machinery through induction of the release of cytochrome c from mitochodria into the cytosol and activation of a typical caspase cascade.  相似文献   

18.
Granulysin is a cytolytic molecule released by CTL via granule-mediated exocytosis. In a previous study we showed that granulysin induced apoptosis using both caspase- and ceramide-dependent and -independent pathways. In the present study we further characterize the biochemical mechanism for granulysin-induced apoptosis of tumor cells. Granulysin-induced death is significantly inhibited by Bcl-2 overexpression and is associated with a rapid (1-5 h) loss of mitochondrial membrane potential, which is not mediated by ceramide generation and is not inhibited by the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide generation induced by granulysin is a slow event, only observable at longer incubation times (12 h). Apoptosis induced by exogenous natural (C(18)) ceramide is truly associated with mitochondrial membrane potential loss, but contrary to granulysin, this event is inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. Ceramide-induced apoptosis is also completely prevented by Bcl-2 overexpression. The nuclear morphology of cells dying after granulysin treatment in the presence of caspase inhibitors suggested the involvement of mitochondrial apoptosis-inducing factor (AIF) in granulysin-induced cell death. We demonstrate using confocal microscopy that AIF is translocated from mitochondria to the nucleus during granulysin-induced apoptosis. The majority of Bcl-2 transfectants are protected from granulysin-induced cell death, mitochondrial membrane potential loss, and AIF translocation, while a small percentage are not protected. In this small percentage the typical nuclear apoptotic morphology is delayed, being of the AIF type at 5 h time, while at longer times (12 h) the normal apoptotic morphology is predominant. These and previous results support a key role for the mitochondrial pathway of apoptosis, and especially for AIF, during granulysin-induced tumoral cell death.  相似文献   

19.
We recently reported translocation and activation of Akt in cardiac mitochondria. This study was to determine whether activation of Akt in mitochondria could inhibit apoptosis of cardiac muscle cells. Insulin stimulation induced translocation of phosphorylated Akt to the mitochondria in primary cardiomyocytes. A mitochondria-targeted constitutively active Akt was overexpressed via adenoviral vector and inhibited efflux of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol and partially prevented loss of mitochondria cross-membrane electrochemical gradient. Activation of caspase 3 was suppressed in the cardiomyocytes transduced with mitochondria-targeted active Akt, whereas a mitochondria-targeted dominant negative Akt enhanced activation of caspase 3. Terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay showed that mitochondrial activation of Akt significantly reduced the number of apoptotic cells. When the endogenous Akt was abolished by LY294002, the antiapoptotic actions of mitochondrial Akt remained effective. These experiments suggested that mitochondrial Akt suppressed apoptosis signaling independent of cytosolic Akt in cardiac muscle cells.  相似文献   

20.
Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号