首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast membrane proteins SMF1, SMF2, and SMF3 are homologues of the DCT1 metal ion transporter family. Their functional characteristics and the implications of these characteristics in vivo have not yet been reported. Here we show that SMF1 expressed in Xenopus oocytes mediates H(+)-dependent Fe(2+) transport and uncoupled Na(+) flux. SMF1-mediated Fe(2+) transport exhibited saturation kinetics (K(m) = 2.2 microM), whereas the Na(+) flux did not, although both processes were electrogenic. SMF1 is also permeable to Li(+), Rb(+), K(+), and Ca(2+), which likely share the same uncoupled pathway. SMF2 (but not SMF3) mediated significant increases in both Fe(2+) and Na(+) transport compared with control oocytes. These data are consistent with the concept that uptake of divalent metal ions by SMF1 and SMF2 is essential to yeast cell growth. Na(+) inhibited metal ion uptake mediated by SMF1 and SMF2 expressed in oocytes. Consistent with this, we found that increased sensitivity of yeast to EGTA in the high Na(+) medium is due to inhibition of SMF1- and SMF2-mediated metal ion transport by uncoupled Na(+) pathway. Interestingly, DCT1 also mediates Fe(2+)-activated uncoupled currents. We propose that uncoupled ion permeabilities in metal ion transporters protect cells from metal ion overload.  相似文献   

2.
Stojilkovic SS 《Cell calcium》2012,51(3-4):212-221
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.  相似文献   

3.
4.
We have examined the distribution of ryanodine receptors, L-type Ca(2+) channels, calsequestrin, Na(+)/Ca(2+) exchangers, and voltage-gated Na(+) channels in adult rat ventricular myocytes. Enzymatically dissociated cells were fixed and dual-labeled with specific antibodies using standard immunocytochemistry protocols. Images were deconvolved to reverse the optical distortion produced by wide-field microscopes equipped with high numerical aperture objectives. Every image showed a well-ordered array of fluorescent spots, indicating that all of the proteins examined were distributed in discrete clusters throughout the cell. Mathematical analysis of the images revealed that dyads contained only ryanodine receptors, L-type Ca(2+) channels, and calsequestrin, and excluded Na(+)/Ca(2+) exchangers and voltage-gated Na(+) channels. The Na(+)/Ca(2+) exchanger and voltage-gated Na(+) channels were distributed largely within the t-tubules, on both transverse and axial elements, but were not co-localized. The t-tubule can therefore be subdivided into at least three structural domains; one of coupling (dyads), one containing the Na(+)/Ca(2+) exchanger, and one containing voltage-gated Na(+) channels. We conclude that if either the slip mode conductance of the Na(+) channel or the reverse mode of the Na(+)/Ca(2+) exchanger are to contribute to the contractile force, the fuzzy space must extend outside of the dyad.  相似文献   

5.
Yang SK  Steyn F  Chen C 《Cell calcium》2012,51(3-4):231-239
The secretion of growth hormone (GH) from somatotrophs located within the anterior pituitary gland is stimulated by endogenous hypothalamic growth hormone-releasing hormone (GHRH) and the GH secretagogue (GHS) ghrelin, and inhibited by somatotropin-releasing inhibitory factor (SRIF, also known as somatostatin). These factors bind to specific G-protein-coupled receptors on the cell membrane, and directly or indirectly modify the properties of ion channels and second messenger systems. Ultimately this results in a change in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and the secretion of GH. Somatotrophs possess a variety of ion channels on their membranes, and modification of these ion channels, especially Ca(2+), K(+), and Na(+) channels, is tightly linked to intracellular Ca(2+) levels and therefore hormone secretion. Various issues regarding receptor distribution, role of ion channels, alteration of membrane potential, and involvement of intracellular signaling system in the control of GH secretion are discussed in this review. In particular, this work will focus on ion channels and [Ca(2+)](i) in somatotrophs.  相似文献   

6.
Zhou W  Chung I  Liu Z  Goldin AL  Dong K 《Neuron》2004,42(1):101-112
BSC1, which was originally identified by its sequence similarity to voltage-gated Na(+) channels, encodes a functional voltage-gated cation channel whose properties differ significantly from Na(+) channels. BSC1 has slower kinetics of activation and inactivation than Na(+) channels, it is more selective for Ba(2+) than for Na(+), it is blocked by Cd(2+), and Na(+) currents through BSC1 are blocked by low concentrations of Ca(2+). All of these properties are more similar to voltage-gated Ca(2+) channels than to voltage-gated Na(+) channels. The selectivity for Ba(2+) is partially due to the presence of a glutamate in the pore-forming region of domain III, since replacing that residue with lysine (normally present in voltage-gated Na(+) channels) makes the channel more selective for Na(+). BSC1 appears to be the prototype of a novel family of invertebrate voltage-dependent cation channels with a close structural and evolutionary relationship to voltage-gated Na(+) and Ca(2+) channels.  相似文献   

7.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

8.
Low-affinity Na+ uptake in the halophyte Suaeda maritima   总被引:3,自引:0,他引:3       下载免费PDF全文
Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter-type transporter and pathway 2 by an AKT1-type channel.  相似文献   

9.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

10.
The family of plant membrane transporters named HKT (for high-affinity K(+) transporters) can be subdivided into subfamilies 1 and 2, which, respectively, comprise Na(+)-selective transporters and transporters able to function as Na(+)-K(+) symporters, at least when expressed in yeast (Saccharomyces cerevisiae) or Xenopus oocytes. Surprisingly, a subfamily 2 member from rice (Oryza sativa), OsHKT2;4, has been proposed to form cation/K(+) channels or transporters permeable to Ca(2+) when expressed in Xenopus oocytes. Here, OsHKT2;4 functional properties were reassessed in Xenopus oocytes. A Ca(2+) permeability through OsHKT2;4 was not detected, even at very low external K(+) concentration, as shown by highly negative OsHKT2;4 zero-current potential in high Ca(2+) conditions and lack of sensitivity of OsHKT2;4 zero-current potential and conductance to external Ca(2+). The Ca(2+) permeability previously attributed to OsHKT2;4 probably resulted from activation of an endogenous oocyte conductance. OsHKT2;4 displayed a high permeability to K(+) compared with that to Na(+) (permeability sequence: K(+) > Rb(+) ≈ Cs(+) > Na(+) ≈ Li(+) ≈ NH(4)(+)). Examination of OsHKT2;4 current sensitivity to external pH suggested that H(+) is not significantly permeant through OsHKT2;4 in most physiological ionic conditions. Further analyses in media containing both Na(+) and K(+) indicated that OsHKT2;4 functions as K(+)-selective transporter at low external Na(+), but transports also Na(+) at high (>10 mm) Na(+) concentrations. These data identify OsHKT2;4 as a new functional type in the K(+) and Na(+)-permeable HKT transporter subfamily. Furthermore, the high permeability to K(+) in OsHKT2;4 supports the hypothesis that this system is dedicated to K(+) transport in the plant.  相似文献   

11.
12.
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.  相似文献   

13.
14.
Interaction of large conductance Ca(2+)- and voltage-activated K(+) (BK(Ca)) channels with Na(+)/K(+)-ATPase, caveolin-1, and cholesterol was studied in human melanoma IGR39 cells. Functional BK(Ca) channels were enriched in caveolin-rich and detergent-resistant membranes, i.e. rafts, and blocking of the channels by a specific BK(Ca) blocker paxilline reduced proliferation of the cells. Disruption of rafts by selective depletion of cholesterol released BK(Ca) channels from these domains with a consequent increase in their activity. Consistently, cholesterol enrichment of the cells increased the proportion of BK(Ca) channels in rafts and decreased their activity. Immunocytochemical analysis showed that BK(Ca) channels co-localize with Na(+)/K(+)-ATPase in a cholesterol-dependent manner, thus suggesting their co-presence in rafts. Supporting this, ouabain, a specific blocker of Na(+)/K(+)-ATPase, inhibited BK(Ca) whole-cell current markedly in control cells but not in cholesterol-depleted ones. This inhibition required the presence of external Na(+). Collectively, these data indicate that the presence of Na(+)/K(+)-ATPase in rafts is essential for efficient functioning of BK(Ca) channels, presumably because the pump maintains a low intracellular Na(+) proximal to the BK(Ca) channel. In conclusion, cholesterol could play an important role in cellular ion homeostasis and thus modulate many cellular functions and cell proliferation.  相似文献   

15.
Das S  Reusch RN 《Biochemistry》2001,40(7):2075-2079
Poly-(R)-3-hydroxybutyrate/polyphosphate (PHB/polyP) complexes, whether isolated from the plasma membranes of bacteria or prepared from the synthetic polymers, form ion channels in planar lipid bilayers that are highly selective for Ca(2+) over Na(+) at physiological pH. This preference for divalent over monovalent cations is attributed to a high density of negative charge along the polyP backbone and the higher binding energies of divalent cations. Here we modify the charge density of polyP by varying the pH, and observe the effect on cation selectivity. PHB/polyP complexes, isolated from E. coli, were incorporated into planar lipid bilayers, and unitary current-voltage relations were determined as a function of pH. When Ca(2+) was the sole permeant cation, conductance diminished steadily from 97 +/- 6 pS at pH 7.4 to 47 +/- 3 pS at pH 5.5. However, in asymmetric solutions of Ca(2+) and Na(+), there was a moderate increase in conductance from 98 +/- 4 at pH 7.4 to 129 +/- 4 pS at pH 6.5, and a substantially larger increase to 178 +/- 6 pS at pH 5.6, signifying an increase in Na(+) permeability or disorganization of channel structure. Reversal potentials point to a sharp decrease in preference for Ca(2+) over Na(+) over a relatively small decrease in pH. Ca(2+) was strongly favored over Na(+) at physiological pH, but the channels became nonselective near the pK(2) of phosphate (approximately 6.8), and displayed weak selectivity for Na(+) over Ca(2+) at acidic pH. Evidently, PHB/polyP complexes are versatile ion carriers whose selectivity may be modulated by small adjustments of the local pH. The results may be relevant to the physiological function of PHB/polyP channels in bacteria and the role of PHB and polyP in the Streptomyces lividans potassium channel.  相似文献   

16.
The TTX-sensitive Ca(2+) current [I(Ca(TTX))] observed in cardiac myocytes under Na(+)-free conditions was investigated using patch-clamp and Ca(2+)-imaging methods. Cs(+) and Ca(2+) were found to contribute to I(Ca(TTX)), but TEA(+) and N-methyl-D-glucamine (NMDG(+)) did not. HEK-293 cells transfected with cardiac Na(+) channels exhibited a current that resembled I(Ca(TTX)) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na(+) channel itself gives rise to I(Ca(TTX)). Furthermore, repeated activation of I(Ca(TTX)) led to a 60% increase in intracellular Ca(2+) concentration, confirming Ca(2+) entry through this current. Ba(2+) permeation of I(Ca(TTX)), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na(+) channels under our experimental conditions. The report of block of I(Ca(TTX)) in guinea pig heart by mibefradil (10 microM) was supported in transfected HEK-293 cells, but Na(+) current was also blocked (half-block at 0.45 microM). We conclude that I(Ca(TTX)) reflects current through cardiac Na(+) channels in Na(+)-free (or "null") conditions. We suggest that the current be renamed I(Na(null)) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I(Na(null)) and Ca(2+) flux through slip-mode conductance of cardiac Na(+) channels is discussed in the context of ion channel biophysics and "permeation plasticity."  相似文献   

17.
18.
Cox DH 《BMB reports》2011,44(10):635-646
Due to its high external and low internal concentration the Ca(2+) ion is used ubiquitously as an intracellular signaling molecule, and a great many Ca(2+)-sensing proteins have evolved to receive and propagate Ca(2+) signals. Among them are ion channel proteins, whose Ca(2+) sensitivity allows internal Ca(2+) to influence the electrical activity of cell membranes and to feedback-inhibit further Ca(2+) entry into the cytoplasm. In this review I will describe what is understood about the Ca(2+) sensing mechanisms of the three best studied classes of Ca(2+)-sensitive ion channels: Large-conductance Ca(2+)-activated K(+) channels, small-conductance Ca(2+)-activated K(+) channels, and voltage- gated Ca(2+) channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.  相似文献   

19.
DL Prole  CW Taylor 《PloS one》2012,7(8):e42404
Fungi are major causes of human, animal and plant disease. Human fungal infections can be fatal, but there are limited options for therapy, and resistance to commonly used anti-fungal drugs is widespread. The genomes of many fungi have recently been sequenced, allowing identification of proteins that may become targets for novel therapies. We examined the genomes of human fungal pathogens for genes encoding homologues of cation channels, which are prominent drug targets. Many of the fungal genomes examined contain genes encoding homologues of potassium (K(+)), calcium (Ca(2+)) and transient receptor potential (Trp) channels, but not sodium (Na(+)) channels or ligand-gated channels. Some fungal genomes contain multiple genes encoding homologues of K(+) and Trp channel subunits, and genes encoding novel homologues of voltage-gated K(v) channel subunits are found in Cryptococcus spp. Only a single gene encoding a homologue of a plasma membrane Ca(2+) channel was identified in the genome of each pathogenic fungus examined. These homologues are similar to the Cch1 Ca(2+) channel of Saccharomyces cerevisiae. The genomes of Aspergillus spp. and Cryptococcus spp., but not those of S. cerevisiae or the other pathogenic fungi examined, also encode homologues of the mitochondrial Ca(2+) uniporter (MCU). In contrast to humans, which express many K(+), Ca(2+) and Trp channels, the genomes of pathogenic fungi encode only very small numbers of K(+), Ca(2+) and Trp channel homologues. Furthermore, the sequences of fungal K(+), Ca(2+), Trp and MCU channels differ from those of human channels in regions that suggest differences in regulation and susceptibility to drugs.  相似文献   

20.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号