首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Important components of the parasitophorous vacuole in which the intracellular protozoan parasite Toxoplasma gondii develops, comprise proteins secreted from apicomplexan specific secretory organelles named the dense granules. Here, we confirm by immunofluorescence and by cryo-electron microscopy that the recently isolated B10 protein (318 amino acids, 41kDa) is a new dense granule protein that should now be referred to as GRA9. Within the vacuolar compartment, GRA9, like GRA2, GRA4 and GRA6, associates with the network of tubular membranes connected to the parasitophorous vacuole delimiting membrane. Like the other GRA proteins, GRA9 is secreted into the vacuole from the anterior end of the parasite. However, unlike GRA2 or GRA6, GRA9 does not transit by the posterior invaginated pocket of the parasite where the network first assembles. Within the dense granules, GRA9 exists in both a soluble and an insoluble state. Like the other GRA proteins, GRA9 is secreted as a soluble form only and like most of the GRA proteins, two forms of GRA9 of the similar molecular weight are detected within the vacuolar space: a soluble form and a membrane associated form. The dual properties of GRA9 are not only ascribed by the presence of amphipathic and hydrophobic alpha-helices but also by the fact that the protein is mainly hydrophilic.  相似文献   

2.
Amphipathic alpha-helices have been proposed as the general means used by soluble proteins to induce membrane tubulation. Previous studies had shown that the GRA2 dense granule protein of Toxoplasma gondii would be a crucial protein for the formation of the intravacuolar membranous nanotubular network (MNN) and that one of the functions of the MNN is to organise the parasites within the parasitophorous vacuole. GRA2 is a small protein (185 amino acids), predicted to contain three amphipathic alpha-helices (alpha1: 70-92; alpha2: 95-110 and alpha3: 119-139) when using the standard programs of secondary structure prediction. To investigate the respective contribution of each alpha-helix in the GRA2 functions, we used DeltaGRA2-HXGPRT knock-out complementation: eight truncated forms of GRA2 were expressed in the deleted recipient and the phenotypes of these mutants were analysed. This study showed that: (i) alpha3, when associated with the N-terminal region (NT) and the C-terminal region (CT), is sufficient to target the protein to the parasite posterior end and to induce formation of membranous vesicles within the vacuole. However, when associated only with CT, alpha3 is not sufficient to provide the hydrophobicity required for membrane association; (ii) the alpha1alpha2 region is alone not sufficient to induce membrane tubulation within the PV; and (iii) only one mutant, NT-alpha1alpha2alpha3, restores most of the biochemical and functional properties of GRA2, including traffic to the dense granules, secretion into the vacuole, association with vacuolar membranes, induction of the MNN formation and organisation of the parasites within the vacuole.  相似文献   

3.
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.  相似文献   

4.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

5.
The dense granules of the intracellular protozoan Toxoplasma gondii are secretory vesicles that play a major role in the structural modifications of the parasitophorous vacuole (PV) in which the parasite develops. The biogenesis of dense granules as well as the regulatory mechanisms controlling their specific exocytosis are still poorly understood. In this paper, we analyzed the secretory pathway of dense granule proteins (GRA proteins) in extracellular T. gondii through the effects of brefeldin A (BFA). Ultrastructural studies of BFA-treated parasites showed disassembly of the Golgi apparatus and accumulation of GRA proteins in a dilated vacuolar system connected to the nuclear envelope. BFA reversibly blocked the intracellular transport of the newly synthesized GRA proteins in a dose-dependent manner (blockade of 95% at 1 microg/ml of BFA). By contrast, discharge of GRA proteins from preformed dense granules was unaffected by BFA over a course of 60 min incubation. GRA protein secretion was dependent on incubation temperature as it only occurred above 26 degrees C and it could be stimulated by external factors. This stimulus might be provided by factor(s) present in the serum of the extracellular medium, as incubation of parasites in serum-free medium resulted in a dramatic decrease in protein secretion. Exocytosis can be restored in a dose-dependent fashion by serum addition (maximal stimulatory activity in the 30-200 kDa range) and was optimal at an extracellular pH of 6.5. Altogether, these results demonstrate that GRA proteins are exported through the Golgi apparatus via the classical secretory pathway and can be experimentally discharged from storage dense granules as regulated secretory proteins in response to specific stimulation, arguing in favor of a regulated component for dense granule exocytosis in T. gondii.  相似文献   

6.
How eukaryotic pathogens export and sort membrane-bound proteins destined for host-cell compartments is still poorly understood. The dense granules of the intracellular protozoan Toxoplasma gondii constitute an unusual secretory pathway that allows soluble export of the GRA proteins which become membrane-associated within the parasite replicative vacuole. This process relies on both the segregation of the proteins routed to the dense granules from those destined to the parasite plasma membrane and on the sorting of the secreted GRA proteins to their proper final membranous system. Here, we provide evidence that the soluble trafficking of GRA6 to the dense granules relies on the N-terminal domain of the protein, which is sufficient to prevent GRA6 targeting to the parasite plasma membrane. We also show that the GRA6 N-terminal domain, possibly by interacting with negatively charged lipids, is fundamental for proper GRA6 association with the vacuolar membranous network of nanotubes. These results support our emerging model: sorting of transmembrane GRA proteins to the host cell vacuole is mainly driven by the dual role of their N-terminal hydrophilic domain and is compartmentally regulated.  相似文献   

7.
Limited proteolysis of proteins transiently expressed on the surface of the opportunistic pathogen Toxoplasma gondii accompanies cell invasion and facilitates parasite migration across cell barriers during infection. However, little is known about what factors influence this specialized proteolysis or how these proteolytic events are regulated. Here we show that genetic ablation of the micronemal protein MIC5 enhances the normal proteolytic processing of several micronemal proteins secreted by Toxoplasma tachyzoites. Restoring MIC5 expression by genetic complementation reversed this phenotype, as did treatment with the protease inhibitor ALLN, which was previously shown to block the activity of a hypothetical parasite surface protease called MPP2. We show that, despite its lack of obvious membrane association signals, MIC5 occupies the parasite surface during invasion in the vicinity of the proteins affected by enhanced processing. Proteolysis of other secretory proteins, including GRA1, was also enhanced in MIC5 knockout parasites, indicating that the phenotype is not strictly limited to proteins derived from micronemes. Together, our findings suggest that MIC5 either directly regulates MPP2 activity or it influences MPP2's ability to access substrate cleavage sites on the parasite surface.  相似文献   

8.
Differentiation of the protozoan parasite Toxoplasma gondii into its latent bradyzoite stage is a key event in the parasite’s life cycle. Compound 2 is an imidazopyridine that was previously shown to inhibit the parasite lytic cycle, in part through inhibition of parasite cGMP-dependent protein kinase. We show here that Compound 2 can also enhance parasite differentiation, and we use yeast three-hybrid analysis to identify TgBRADIN/GRA24 as a parasite protein that interacts directly or indirectly with the compound. Disruption of the TgBRADIN/GRA24 gene leads to enhanced differentiation of the parasite, and the TgBRADIN/GRA24 knockout parasites show decreased susceptibility to the differentiation-enhancing effects of Compound 2. This study represents the first use of yeast three-hybrid analysis to study small-molecule mechanism of action in any pathogenic microorganism, and it identifies a previously unrecognized inhibitor of differentiation in T. gondii. A better understanding of the proteins and mechanisms regulating T. gondii differentiation will enable new approaches to preventing the establishment of chronic infection in this important human pathogen.  相似文献   

9.
Chemokines play an important role in the physiopathology of toxoplasmosis in murine models. Infection of different human cell types by Toxoplasma gondii induces the secretion of these immune mediators. The aim of our study was to identify parasite molecules that could be involved in the triggering of chemokine ligand 2 (CCL2) secretion during T. gondii host cell invasion: surface, micronemal, rhoptry and dense granule proteins. The secretion of CCL2 was studied 1) after infection of human fibroblasts with mutants of Toxoplasma RH strain deficient either for GRA5, GRA2-GRA6, ROP1 or SAG1; 2) after stimulation by micronemal proteins or by the immunodominant surface antigen 1 of T. gondii. CCL2 secretion was quantified by ELISA at 3 h and/or 24 h after infection or stimulation. Infection by Deltagra2-Deltagra6, Deltagra5 or Deltarop1 mutants did not modify the level of CCL2, as compared with the level measured after infection with the wild-type strain. Moreover, stimulation with micronemal proteins did not increase the secretion of this chemokine. By contrast, the level of CCL2 was increased 3 h post-stimulation by purified or recombinant SAG1. Specificity of this effect was confirmed by the decrease in CCL2 secretion when human fibroblasts were infected with the Deltasag1 mutant (48%) as compared with the wild-type strain (100%). In conclusion, this major Toxoplasma surface protein SAG1, specific to the tachyzoite stage, is directly or indirectly involved in the cellular mechanisms triggering CCL2 secretion after T. gondii infection. These results could explain the parasitic mechanisms leading to cell infiltrates detected only in the presence of tachyzoites, a phenomenon observed in toxoplasmic reactivation.  相似文献   

10.
During intracellular stay, Toxoplasma gondii secretes dense granule proteins (GRA) which remodel the parasitophorous vacuole and are considered functional in parasite-host interrelation. Comparative analysis of parasites from mouse-virulent strain BK and an in vitro attenuated variant revealed that the level of GRA7 expression correlates with T. gondii virulence: proteome analysis and quantitation by immunoblot demonstrated a massive decrease in GRA7 steady-state synthesis parallel to the loss of virulence. Properties of GRA7 that are pertinent to its membrane targeting and to GRA7-directed immune resistance were studied in detail. GRA7 is exclusively membrane-associated in both parasites and infected host cells as demonstrated by subcellular fractionations. Triton X-114 partitioning of isolated parasites substantiated that GRA7 is an integral membrane protein, the hydrophobic stretch from amino acid 181 to 202 providing a possible membrane anchor. A fraction enriched for membranous material from infected host cells contained additional forms of GRA7 with reduced mobility in gel electrophoresis, indicating that the protein is modified after exocytosis from the parasite. By flow cytometric analysis, GRA7 was detected on the surface of intact host cells. An intracellular origin of surface-associated GRA7 seems likely since GRA7 released from extracellular parasites failed to label the host cell surface. Consistent with a role at a parasite-host interface, GRA7 proved to be a target antigen of the intracerebral immune response as evidenced by the presence of GRA7-specific antibodies in mouse cerebrospinal fluid during chronic infection.  相似文献   

11.
All known proteins that accumulate in the vacuolar space surrounding the obligate intracellular protozoan parasite Toxoplasma gondii are derived from parasite dense granules. To determine if constitutive secretory vesicles could also mediate delivery to the vacuolar space, T. gondii was stably transfected with soluble Escherichia coli alkaline phosphatase and E. coli β-lactamase. Surprisingly, both foreign secretory reporters were delivered quantitatively into parasite dense granules and efficiently secreted into the vacuolar space. Addition of a glycosylphosphatidylinositol membrane anchor rerouted alkaline phosphatase to the parasite surface. Alkaline phosphatase fused to the transmembrane domain and cytoplasmic tail from the endogenous dense granule protein GRA4 localized to dense granules. The protein was secreted into a tuboreticular network in the vacuolar space, in a fashion dependent upon the cytoplasmic tail, but not upon a tyrosine-based motif within the tail. Alkaline phosphatase fused to the vesicular stomatitis virus G protein transmembrane domain and cytoplasmic tail localized primarily to the Golgi, although staining of dense granules and the intravacuolar network was also detected; truncating the cytoplasmic tail decreased Golgi staining and increased delivery to dense granules but blocked delivery to the intravacuolar network. Targeting of secreted proteins to T. gondii dense granules and the plasma membrane uses general mechanisms identified in higher eukaryotic cells but is simplified and exaggerated in scope, while targeting of secreted proteins beyond the boundaries of the parasite involves unusual sorting events.  相似文献   

12.
A critical step in infection by the apicomplexan parasite Toxoplasma gondii is the formation of a membrane-bound compartment within which the parasite proliferates. This process relies on a set of secretory organelles that discharge their contents into the host cell upon invasion. Among these organelles, the dense granules are specialized in the export of transmembrane (TM) GRA proteins, which are major components of the mature parasitophorous vacuole (PV) membrane. How eukaryotic pathogens export and sort membrane-bound proteins destined for the host cell is still poorly understood at the mechanistic level. In this study, we show that soluble trafficking of the PV-targeted GRA5 TM protein is parasite specific: when expressed in mammalian cells, GRA5 is targeted to the plasma membrane and behaves as an integral membrane protein with a type I toplogy. We also demonstrate the dual role of the GRA5 N-terminal ectodomain, which is sufficient to prevent membrane integration within the parasite and is essential for both sorting and post-secretory membrane insertion into the vacuolar membrane. These results contrast with the general rule that states that information contained within the cytoplasmic tail and/or the TM domain of integral membrane proteins dictates their cellular localization. They also highlight the diversity of sorting mechanisms that leads to the specialization of secretory processes uniquely adapted to intracellular parasitism.  相似文献   

13.
Intracellular pathogens have evolved a wide array of mechanisms to invade and co-opt their host cells for intracellular survival. Apicomplexan parasites such as Toxoplasma gondii employ the action of unique secretory organelles named rhoptries for internalization of the parasite and formation of a specialized niche within the host cell. We demonstrate that Toxoplasma gondii also uses secretion from the rhoptries during invasion to deliver a parasite-derived protein phosphatase 2C (PP2C-hn) into the host cell and direct it to the host nucleus. Delivery to the host nucleus does not require completion of invasion, as evidenced by the fact that parasites blocked in the initial stages of invasion with cytochalasin D are able to target PP2C-hn to the host nucleus. We have disrupted the gene encoding PP2C-hn and shown that PP2C-hn-knockout parasites exhibit a mild growth defect that can be rescued by complementation with the wild-type gene. The delivery of parasite effector proteins via the rhoptries provides a novel mechanism for Toxoplasma to directly access the command center of its host cell during infection by the parasite.  相似文献   

14.
The inner membrane complex (IMC), a series of flattened vesicles at the periphery of apicomplexan parasites, is thought to be important for parasite shape, motility and replication, but few of the IMC proteins that function in these processes have been identified. TgPhIL1, a Toxoplasma gondii protein that was previously identified through photosensitized labeling with 5-[(125)I] iodonapthaline-1-azide, associates with the IMC and/or underlying cytoskeleton and is concentrated at the apical end of the parasite. Orthologs of TgPhIL1 are found in other apicomplexans, but the function of this conserved protein family is unknown. As a first step towards determining the function of TgPhIL1 and its orthologs, we generated a T. gondii parasite line in which the single copy of TgPhIL1 was disrupted by homologous recombination. The TgPhIL1 knockout parasites have a distinctly different morphology than wild-type parasites, and normal shape is restored in the knockout background after complementation with the wild-type allele. The knockout parasites are outcompeted in culture by parasites expressing functional TgPhIL1, and they generate a reduced parasite load in the spleen and liver of infected mice. These findings demonstrate a role for TgPhIL1 in the morphology, growth and fitness of T. gondii tachyzoites.  相似文献   

15.
During the development of the asexual stage of the malaria parasite, Plasmodium falciparum, the composition, structure and function of the host cell membrane is dramatically altered, including the ability to adhere to vascular endothelium. Crucial to these changes is the transport of parasite proteins, which become associated with or inserted into the erythrocyte membrane. Protein and membrane targeting beyond the parasite plasma membrane must require unique pathways, given the parasites intracellular location within a parasitophorous vacuolar membrane and the lack of organelles and biosynthetic machinery in the host cell necessary to support a secretory system. It is not clear how these proteins cross the parasitophorous vacuolar membrane or how they traverse the erythrocyte cytosol to reach their final destinations. The identification of: (1) a P. falciparum homologue of the protein Sar1p, which is an essential component of the COPII-based secretory system in mammalian cells and yeast and (2) electron-dense, possibly coated, secretory vesicles bearing P. falciparum erythrocyte membrane protein 1 and P. falciparum erythrocyte membrane protein 3 in the host cell cytosol of P. falciparum infected erythrocytes recently provided the first direct evidence of a vesicle-mediated pathway for the trafficking of some parasite proteins to the erythrocyte membrane. The major advance in uncovering the parasite-induced secretory pathway was made by incubating infected erythrocytes with aluminium tetrafluoride, an activator of guanidine triphosphate-binding proteins, which resulted in the accumulation of the vesicles into multiple vesicle strings. These vesicle complexes were often associated with and closely abutted the erythrocyte membrane, but were apparently prevented from fusing by the aluminium fluoride treatment, making their capture by electron microscopy possible. It appears that malaria parasites export proteins into the host cell cytosol to support a vesicle-mediated protein trafficking pathway.  相似文献   

16.
A structure for a generalized insect epidermal cell during the formation of the epicuticle is proposed, based on studies of several different epidermal cell types. The protein epicuticle is defined as the dense homogeneous layer below the cuticulin. The formation of the protein epicuticle involves secretory vesicles arising in Golgi complexes, and marks an interlude in the involvement in cuticle formation of plasma membrane plaques. The plaques are concerned in cuticulin formation before and in fibrous cuticle formation after the deposition of the protein epicuticle. The epidermis is characterized by the possession of a cytoskeleton of microtubules and a matrix of microfibers. In the elongated cells forming bristles and spines, the microfibers are often oriented in bundles with an axial banding which repeats every 120 Å. The microtubules are also arranged in columns with a trigonal packing and center to center spacing of about 800 Å. These cytoskeletal structures separate the other organelles into channels which may restrict the pathways open for the movement of secretory and pinocytotic vesicles. The protein epicuticle arises from the secretory vesicles which discharge at the apical surface. The contents disperse and reaggregate below the cuticulin. The Golgi complexes in the basal and central regions have many secretory vesicles and a small saccular component, differing from those nearer the apex which are smaller and have fenestrated saccules. The small coated vesicles (800 Å in diameter) associated with both sorts of complex, probably move to the apical and basal faces of the cell where they may give rise to the large coated vesicles (2000 Å in diameter) inserted in the plasma membrane. Pinocytosis occurs from both apical and basal faces but most lytic activity is in the apical region. Plant peroxidase injected into the haemocoel is taken up basally and transported to the apical MVBs. The large coated vesicles on the apical face may be concerned in the control of the extracellular subcuticular environment. They appear to fill up and detach, fusing to become the apical MVBs.  相似文献   

17.
Gliding motility is an essential and fascinating apicomplexan-typical adaptation to an intracellular lifestyle. Apicomplexan parasites rely on gliding motility for their migration across biological barriers and for host cell invasion and egress. This unusual substratedependent mode of locomotion involves the concerted action of secretory adhesins, a myosin motor, factors regulating actin dynamics and proteases. During invasion, complexes of soluble and transmembrane micronemes proteins (MICs) and rhoptry neck proteins (RONs) are discharged to the apical pole of the parasite, some protein acts as adhesins and bind to host cell receptors whereas others are involved in the moving junction formation. These complexes redistribute towards the posterior pole of the parasite via a physical connection to the parasite actomyosin system and are eventually released from the parasite surface by the action of parasite proteases.  相似文献   

18.
Parasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway. This was achieved by targeting the N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that mediate the fusion of early secretory vesicles. In the presence of dominant negative variants of sec22b or some of its known cognate partners, D12 and syntaxin 18, PVs failed to distend and harboured fewer parasites. These observations were confirmed in studies in which each of the SNAREs listed above including the intermediate compartment ER/Golgi SNARE, syntaxin 5, was knocked down. The knock-down of these SNARES had little or no measurable effect on the morphology of the ER or on activated secretion even though they resulted in a more significant reduction of PV size. Moreover, the knock-down of the ER/Golgi SNAREs resulted in significant reduction in parasite replication. Taken together, these studies provide further evidence that PVs acquire ER components by fusing with vesicles derived from the early secretory pathway; disruption of this interaction results in inhibition of the development of PVs as well as the limitation of parasite replication within infected cells.  相似文献   

19.
Post-Golgi vesicle trafficking is indispensable for precise movement of proteins to the pellicle, the sub-pellicle network and apical secretory organelles in Apicomplexa. However, only a small number of molecular complexes involved in trafficking, tethering and fusion of vesicles have been identified in Toxoplasma gondii. Consequently, it is unclear how complicated vesicle trafficking is accomplished in this parasite. Sec1/Munc18-like (SM) proteins are essential components of protein complexes involved in vesicle fusion. Here, we found that depletion of the SM protein TgSec1 using an auxin-inducible degron-based conditional knockout strategy led to mislocalization of plasma membrane proteins. By contrast, conditional depletion of the SM protein TgVps45 led to morphological changes, asymmetrical loss of the inner membrane complex and defects in nucleation of sub-pellicular microtubules, polarization and symmetrical assembly of daughter parasites during repeated endodyogeny. TgVps45 interacts with the SNARE protein TgStx16 and TgVAMP4-1. Conditional ablation of TgStx16 causes the similar growth defect like TgVps45 deficiency suggested they work together for the vesicle fusion at TGN. These findings indicate that these two SM proteins are crucial for assembly of pellicle and sub-pellicle network in T. gondii respectively.  相似文献   

20.
Vertebrate cells are highly susceptible to infection by obligate intracellular parasites such as Toxoplasma gondii, yet the mechanism by which these microbes breach the confines of their target cell is poorly understood. While it is thought that Toxoplasma actively invades by secreting adhesive proteins from internal organelles called micronemes, no genetic evidence is available to support this contention. Here, we report successful disruption of M2AP, a microneme protein tightly associated with an adhesive protein called MIC2. M2AP knockout parasites were >80% impaired in host cell entry. This invasion defect was likely due to defective expression of MIC2, which partially accumulated in the parasite endoplasmic reticulum and Golgi. M2AP knockout parasites were also unable to rapidly secrete MIC2, an event that normally accompanies parasite attachment to a target cell. These findings indicate a critical role for the MIC2-M2AP protein complex in parasite invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号