首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of methanol metabolism in Nocardia sp. 239 was investigated. Growth on mixtures of glucose or acetate plus methanol in batch cultures resulted in simultaneous utilization of the substrates. The presence of glucose, but not of acetate, repressed synthesis of the ribulose monophosphate (RuMP) cycle enzymes hexulose-6-phosphate synthase (HPS) and hexulose-6-phosphate isomerase (HPI), and methanol was used as an energy source only. Comparable results were obtained following addition of formaldehyde (fed-batch system) to a culture growing on glucose. The synthesis of the methanol dissimilatory and assimilatory enzymes in Nocardia sp. 239 thus appears to be controlled differently. Methanol and/or formaldehyde induce the synthesis of these enzymes, but under carbon-excess conditions their inducing effect on HPS and HPI synthesis is completely overruled by glucose, or metabolites derived from it. Repression of the synthesis of these RuMP cycle enzymes was of minor importance under carbon- and energy-limiting conditions in chemostat cultures. Addition of a pulse of glucose to a formaldehyde-limited (2.5 mmol l–1 h–1) fed-batch culture resulted in a decrease in the levels of several enzymes of methanol metabolism (including HPI), whereas the HPS levels remained relatively constant. Increasing HPS/HPI activity ratios were also observed with increasing growth rates in formaldehyde-limited chemostat cultures. The data indicate that additional mechanisms, the identity of which remains to be elucidated, are involved in controlling the levels of these C1-specific enzymes in Nocardia sp. 239.Abbreviations HPS hexulose-6-phosphate synthase - HPI hexulose-6-phosphate isomerase - RuMP ribulose monophosphate - FBP fructose-1,6-bisphosphate - PFK 6-phosphofructokinase  相似文献   

2.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

3.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

4.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

5.
All Xanthobacter strains studied are versatile autotrophic bacteria, able to grow on methanol and other substrates. Strain 25a, a yellow-pigmented, pleomorphic, Gram-negative bacterium, capable of autotrophic growth on methanol, formate, thiosulfate, and molecular hydrogen, was isolated from an enrichment culture inoculated with soil from a subtropical greenhouse. Subsequent studies showed that the organism also grows on a wide range of multicarbon substrates. Ammonia, nitrate and molecular nitrogen were used as nitrogen sources. The taxonomic relationship of strains H4-14 and 25a with previously described Xanthobacter strains was studied by numerical classification. Strain H4-14 was identified as a X. flavus strain, but the precise position of strain 25a remained uncertain. It probably belongs to a new species of the genus Xanthobacter. The levels of various enzymes involved in autotrophic and heterotrophic metabolism were determined following growth of strains H4-14 and 25a in batch and continuous cultures. The mechanisms involved in controlling ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis in Xanthobacter strains appear to be comparable to those observed for other autotrophic bacteria, namely repression by organic compounds and derepression by autotrophic energy sources, such as methanol and hydrogen.Abbreviations API appareils et procédés d'identification - CS citrate synthase - ED Entner-Doudoroff pathway - FBP fructose-1,6-bisphosphate - FDH formate dehydrogenase - HPS hexulose-6-phosphate synthase - ICDH isocitrate dehydrogenase - KDPG 2-keto-3-deoxy-6-phosphogluconate - MDH methanol dehydrogenase - PRK phosphoribulokinase - PQQ pyrrolo quinoline quinone - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate  相似文献   

6.
The ribulose monophosphate cycle methylotroph Methylobacillus flagellatum was grown under oxyturbidostat conditions on mixtures of methanol and formaldehyde. Formaldehyde when added at low concentration (50 mg/l) increased the methanol consumption and the yield of biomass. The presence of 150–300 mg/l of formaldehyde resulted in an increase of the growth rate from 0.74 to about 0.79–0.82 h-1. The presence of 500 mg/l of formaldehyde in the inflow decreased culture growth characteristics. Activities of methanol dehydrogenase and enzymes participating in formaldehyde oxidation and assimilation were measured. The enzymological profiles obtained are discussed.Abbreviations MDH methanol dehydrogenase - NAD-linked FDDH NAD-linked formaldehyde dehydrogenase - DLFDDH dye-linked formaldehyde dehydrogenase - DLFDH dye-linked formate dehydrogenase - GPDH glucose-6-phosphate dehydrogenase - PGDH 6-phosphogluconate dehydrogenase - RuMP cycle ribulose monophosphate cycle  相似文献   

7.
Among methylamine and/or ethylamine minus mutants of Arthrobacter P1 four different classes were identified, which were blocked either in the methylamine transport system, amine oxidase, hexulose phosphate synthase or acetaldehyde dehydrogenase. The results indicated that a common primary amine oxidase is involved in the metabolism of methylamine and ethylamine. Growth on ethylamine, however, was not dependent on the presence of the methylamine transport system. In mutants lacking amine oxidase, methylamine was unable to induce the synthesis of hexulose phosphate synthase, thus confirming the view that the actual inducer for the latter enzyme is not methylamine, but its oxidation product formaldehyde. Contrary to expectation, when the formaldehyde fixing enzyme hexulose phosphate synthase was deleted (mutant Art 11), accumulation of formaldehyde during growth on choline or on glucose plus methylamine as a nitrogen source did not occur. Evidence was obtained to indicate that under these conditions formaldehyde may be oxidized to carbon dioxide via formate, a sequence in which peroxidative reactions mediated by catalase are involved. In addition, a specific NAD-dependent formaldehyde dehydrogenase was detected in choline-grown cells of wild type Arthrobacter P1 and strain Art 11. This enzyme, however, does not play a role in methylamine or formaldehyde metabolism, apparently because these compounds do not induce its synthesis.Abbreviations RuMP ribulose monophosphate - HPS hexulose phosphate synthase - HPI hexulose phosphate isomerase  相似文献   

8.
The crystal structure of the hypothetical protein MJ1247 from Methanococccus jannaschii at 2 A resolution, a detailed sequence analysis, and biochemical assays infer its molecular function to be 3-hexulose-6-phosphate isomerase (PHI). In the dissimilatory ribulose monophosphate (RuMP) cycle, ribulose-5-phosphate is coupled to formaldehyde by the 3-hexulose-6-phosphate synthase (HPS), yielding hexulose-6-phosphate, which is then isomerized to fructose-6-phosphate by the enzyme 3-hexulose-6-phosphate isomerase. MJ1247 is an alpha/beta structure consisting of a five-stranded parallel beta sheet flanked on both sides by alpha helices, forming a three-layered alpha-beta-alpha sandwich. The fold represents the nucleotide binding motif of a flavodoxin type. MJ1247 is a tetramer in the crystal and in solution and each monomer has a folding similar to the isomerase domain of glucosamine-6-phosphate synthase (GlmS).  相似文献   

9.
Abstract For a number of years we have tried to isolate versatile methylotrophic bacteria employing the ribulose monophosphate (RuMP) cycle of formaldehyde fixation. Recently this has resulted in the development of techniques for the selective enrichment and isolation in pure culture of Bacillus strains able to grow in methanol mineral medium over a temperature range between 35 and 60°C. At the optimum growth temperatures (50–55°C), these isolates display doubling times between 40 and 80 min. The metabolism of the strains studied is strictly respiratory. Methanol assimilation is exclusively via the RuMP cycle variants with the fructose bisphosphate (FBP) aldolase cleavage and transketolase (TK)/transaldolase (TA) rearrangement. Whole cells were unable to oxidize formate, and no activities of NAD-(in)dependent formaldehyde and formate dehydrogenases were detected. Formaldehyde oxidation most likely proceeds via the so-called dissimilatory RuMP cycle. The initial oxidation of methanol is catalyzed by an NAD-dependent methanol dehydrogenase present as an abundant protein in all strains. The enzyme from Bacillus sp. C1 has been purified and characterized.  相似文献   

10.
Acetobacter methanolicus MB58 can grow on methanol. Since this substrate exhibits to be energy deficient there must be a chance to oxidize methanol to CO2 merely for purpose of energy generation. For the assimilation of methanol the FBP variant of the RuMP pathway is used. Hence methanol can be oxidized cyclically via 6-phosphogluconate. Since Acetobacter methanolicus MB58 possesses all enzymes for a linear oxidation via formate the question arises which of both sequences is responsible for generation of the energy required. In order to clarify this the linear sequence was blocked by inhibiting the formate dehydrogenase with hypophosphite and by mutagenesis inducing mutants defective in formaldehyde or formate dehydrogenase. It has been shown that the linear dissimilatory sequence is indispensable for methylotrophic growth. Although the cyclic oxidation of formaldehyde to CO2 has not been influenced by hypophosphite and with mutants both the wild type and the formaldehyde dehydrogenase defect mutants cannot grown on methanol. The cyclic oxidation of formaldehyde does not seem to be coupled to a sufficient energy generation, probably it operates only detoxifying and provides reducing equivalents for syntheses. The regulation between assimilation and dissimilation of formaldehyde in Acetobacter methanolicus MB58 is discussed.Abbreviations ATP Adenosine-5-triphosphate - DCPIP 2,6-dichlorphenolindophenol - DW dry weight - ETP electron transport phosphorylation - FBP fructose-1,6-bisphosphate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PMS phenazine methosulfate - RuMP ribulose monophosphate - Ru5P ribulose-5-phosphate - SDS sodiumdodecylsulphate - TCA tricarboxylic acid - TYB toluylene blue Dedicated to Prof. Dr. Dr. S. M. Rapoport on occasion of his 75th birthday  相似文献   

11.
The regulation of methylamine and formaldehyde metabolism in Arthrobacter P1 was investigated in carbonlimited continuous cultures. To avoid toxic effects of higher formaldehyde concentrations, formaldehyde-limited cultures were established in smooth substrate transitions from choline-limitation. Evidence was obtained that the synthesis of enzymes involved in the conversion of methylamine into formaldehyde and in formaldehyde fixation is induced sequentially in this organism. Compared to growth with methylamine the molar growth yield on formaldehyde was approximately 30% higher. This difference is mainly due to the expenditure of energy for the uptake of methylamine from the medium.The addition of a pulse of a heterotrophic substrate, glucose or acetate, to C1 substrate-limited continuous cultures resulted in relief of carbon limitation and transient synthesis of increasing amounts of cell material. Concomitantly, a significant decrease in the specific activities of hexulose phosphate synthase was observed. However, the total activity of hexulose phosphate synthase in these cultures remained clearly in excess of that required to fix the formaldehyde that became available in time. The observed strong decrease in the specific activities of this RuMP cycle enzyme strongly suggests that its synthesis is controlled via catabolite repression exerted by the metabolism of heterotrophic substrates.Abbreviations HPS 3-Hexulose-6-phosphate synthase - HPI 3-hexulose-6-phosphate isomerase - RuMP ribulose monophosphate  相似文献   

12.
Formaldehyde dehydrogenase and formate dehydrogenase were purified 45- and 16-fold, respectively, from Hansenula polymorpha grown on methanol. Formaldehyde dehydrogenase was strictly dependent on NAD and glutathione for activity. The K mvalues of the enzyme were found to be 0.18 mM for glutathione, 0.21 mM for formaldehyde and 0.15 mM for NAD. The enzyme catalyzed the glutathine-dependent oxidation of formaldehyde to S-formylglutathione. The reaction was shown to be reversible: at pH 8.0 a K mof 1 mM for S-formylglutathione was estimated for the reduction of the thiol ester with NADH. The enzyme did not catalyze the reduction of formate with NADH. The NAD-dependent formate dehydrogenase of H. polymorpha showed a low affinity for formate (K mof 40 mM) but a relatively high affinity for S-formylglutathione (K mof 1.1 mM). The K mvalues of formate dehydrogenase in cell-free extracts of methanol-grown Candida boidinii and Pichia pinus for S-formylglutathione were also an order of magnitude lower than those for formate. It is concluded that S-formylglutathione rather than free formate is an intermediate in the oxidation of methanol by yeasts.  相似文献   

13.
The influence of nitrogen limitation on the regulation of the methanol oxidizing enzymes alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase in the two methylotrophic yeastsHansenula polymorpha andKloeckera sp. 2201 was studied in continuous culture. When shifted from carbon-limited growth conditions (with a mixture of glucose and methanol as carbon sources) to a nitrogen-limited environment both cultures were found to go through a transition phase where neither enhanced residual concentrations of the nitrogen source nor of one of the two carbon sources could be detected in the supernatant. As soon as nitrogen became a limiting substrate an immediate reorganisation of the cell composition was initiated: protein content of the cells dropped to approximately 40% of its initial value, glycogen was synthesized and the enzyme composition of the cells was changed. The peroxisomal enzymes alcohol oxidase and catalase in both organisms and the two dehydrogenases for formaldehyde and formate in cells ofKloeckera sp. 2201 were subject to degradation (catabolite inactivation). The measured rates of inactivation indicated that in cells ofH. polymorpha this process might be limited to peroxisomes, whereas inKloeckera sp. 2201 the degradation was found to affect peroxisomal as well as cytoplasmic enzymes. In contrast to methanol dissimilating enzymes the net rate of synthesis of hexokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was not affected by this process but those enzymes were synthesized with increased rates.  相似文献   

14.
A comparative study was made of the regulation of the synthesis of methanol dissimilating enzymes inkloeckera sp. 2201 andHansenula polymorpha using chemostat and batch growth conditions and methanol or glucose as carbon sources. During growth in methanol-limited chemostat cultures similar enzyme patterns for alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase in the two yeasts were found. When growing in batch culture with glucoseH. polymorpha, but notKloeckera sp. 2201, was found to produce ethanol which might affect the synthesis of these enzymes.  相似文献   

15.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

16.
Extracts of Pseudomonas C grown on methanol as a sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts. The addition of D-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when D-ribulose 5-phosphate was present in the assay mixtures. The amount of radioactivity found in CO2, was 6;8-times higher when extracts of methanol-grown Pseudomonas C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate. These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

17.
During growth of the facultative methylotroph Arthrobacter P1 on methylamine or ethylamine both substrates are metabolized initially in an identical fashion, via the respective aldehydes. The regulatory mechanisms governing the synthesis and activities of enzymes involved in amine and aldehyde utilization were studied in substrate transition experiments. Transfer of ethylamine-grown cells into a medium with methylamine resulted in immediate exeretion of low levels of formaldehyde (max. 0.5 mM) and formate. In the reverse experiment, transfer of methylaminegrown cells into a medium with ethylamine, excretion of much higher levels of acetaldehyde (max. 3.5 mM) occurred. These different levels of aldehyde accumulation were also observed in studies with mutants of Arthrobacter P1 blocked in the synthesis of hexulose phosphate synthase or acetaldehyde dehydrogenase. In wild type Arthrobacter P1, aldehyde production resulted in rapid induction of the synthesis of enzymes involved in their degradation but also in temporary inhibition of further amine utilization and growth. The latter aetivities only resumed at normal rates after the disappearance of the aldehydes from the cultures. Acetaldehyde utilization resulted in intermittent excretion of ethanol and acetate, whereas formaldehyde utilization resulted in further accumulation of formate.During growth of Arthrobacter P1 in the presence of methylamine accumulation of toxic levels of formaldehyde is prevented because of the rapid synthesis of hexulose phosphate synthase to high activities and, in transient state situations, by feedback inhibition of formaldehyde on the activities of the methylamine transport system and amine oxidase.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoate) - HPS hexulosephosphate synthase - MS mineral salts - RuMP ribulose monophosphate  相似文献   

18.
Habituated (H) nonorganogenic sugarbeet callus was found to exhibit a disturbed sugar metabolism. In contrast to cells from normal (N) callus, H cells accumulate glucose and fructose and show an abnormal high fructose/glucose ratio. Moreover, H cells which have decreased wall components, display lower glycolytic enzyme activities (hexose phosphate isomerase and phosphofructokinase) which is compensated by higher activities of the enzymes of the hexose monophosphate pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase). The disturbed sugar metabolism of the H callus is discussed in relation to a deficiency in H2O2 detoxifying systems.Abbreviations 6PG-DH 6-phosphogluconate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - H fully habituated callus - HK hexokinase - HMP hexoses monophosphate - HPI hexose phosphate isomerase - N normal callus - PFK phosphofructokinase  相似文献   

19.
The regulation of C1-metabolism in Xanthobacter strain 25a was studied during growth of the organism on acetate, formate and methanol in chemostat cultures. No activity of methanol dehydrogenase (MDH), formate dehydrogenase (FDS) or ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisC/O) could be detected in cells grown on acetate alone over a range of dilution rates tested. Addition of methanol or formate to the feed resulted in the immediate induction of MDH and FDH and complete utilization (D=0.10 h-1) of acetate and the C 1-substrates. The activities of these enzymes rapidly dropped at the higher growth rates, which suggests that their synthesis is further controlled via repression by heterotrophic substrates such as acetate. Synthesis of RuBisC/O already occurred at low methanol concentrations in the feed, resulting in additive growth yields on acetate/methanol mixtures. The energy generated in the oxidation of formate initially allowed an increased assimilation of acetate (and a decreased dissimilation), resulting in enhanced growth yields on the mixture. RuBisC/O activity could only be detected at the higher formate/acetate ratios in the feed. The data suggest that synthesis of RuBisC/O and CO2 fixation via the Calvin cycle in Xanthobacter strain 25 a is controlled via a (de)repression mechanism, as is the case in other facultatively autotrophic bacteria. Autotrophic CO2 fixation only occurs under conditions with a diminished supply of heterotrophic carbon sources and a sufficiently high availability of suitable energy sources. The latter point is further supported by the clearly more pronounced derepressing effect exerted by methanol compared to formate.Abbreviations FDH formate dehydrogenase - FBPase fructose-1,6-bisphosphatase - ICDH isocitrate dehydrogenase - MDH methanol dehydrogenase - PQQ pyrrolo quinoline quinone - PRK phosphoribulokinase - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate - TCA tricarboxylic acid cycle  相似文献   

20.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号