首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four amino acids were variable between the ‘active’ indica-type and ‘inactive’ japonica-type soluble starch synthase IIa (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica SSIIa were replaced by Met-737 in cv. Nipponbare and Phe-781 in cv. Kinmaze SSIIa, respectively. The SSIIa gene fragments shuffling experiments revealed that Val-737 and Leu-781 are essential not only for the optimal SSIIa activity, but also for the capacity to synthesize indica-type amylopectin. Surprisingly, however, a combination of Phe-781 and Gly-604 could restore about 44% of the SSIIa activity provided that Val-737 was conserved. The introduction of the ‘active’ indica-type SSIIa gene enabled the japonica-type cv. Kinmaze to synthesize indica-type amylopectin. The starch in the transformed japonica rice plants exhibited gelatinization-resistant properties that are characteristic of indica-rice starch. Transformed lines expressing different levels of the IR36 SSIIa protein produced a variety of starches with amylopectin chain-length distribution patterns that correlated well with their onset temperatures of gelatinization. The present study confirmed that the SSIIa activity determines the type of amylopectin structure of rice starch to be either the typical indica-type or japonica-type, by playing a specific role in the synthesis of the long B1 chains by elongating short A and B1 chains, notwithstanding the presence of functional two additional SSII genes, a single SSI gene, two SSIII genes, and two SSIV genes in rice plants.  相似文献   

2.
This paper describes a fluorescence in situ hybridization (FISH) analysis of three different repetitive sequence families, which were mapped to mitotic metaphase chromosomes and extended DNA fibers (EDFs) of the two subspecies of rice (Oryza sativa), indica and japonica (2n=2x=24). The repeat families studied were (1) the tandem repeat sequence A (TrsA), a functionally non-significant repeat; (2) the [TTTAGGG]n telomere sequence, a non-transcribed, tandemly repeated but functionally significant repeat; and (3) the 5S ribosomal RNA (5S rDNA). FISH of the TrsA repeat to metaphase chromosomes of indica and japonica cultivars revealed clear signals at the distal ends of twelve and four chromosomes, respectively. As shown in a previous report, the 17S ribosomal RNA genes (17S rDNA) are located at the nucleolus organizers (NORs) on chromosomes 9 and 10 of the indica cultivar. However, the japonica rice lacked the rDNA signals on chromosome 10. The size of the 5S rDNA repeat block, which was mapped on the chromosome 11 of both cultivars, was 1.22 times larger in the indica than in the japonica genome. The telomeric repeat arrays at the distal ends of all chromosome arms were on average three times longer in the indica genome than in the japonica genome. Flow cytometric measurements revealed that the nuclear DNA content of indica rice is 9.7% higher than that of japonica rice. Our data suggest that different repetitive sequence families contribute significantly to the variation in genome size between indica and japonica rice, though to different extents. The increase or decrease in the copy number of several repetitive sequences examined here may indicate the existence of a directed change in genome size in rice. Possible reasons for this phenomenon of concurrent evolution of various repeat families are discussed. Received: 9 August 1999 / Accepted: 29 December 1999  相似文献   

3.
 Weedy rice (Oryza sativa L.) is an important resource for breeding and for studying the evolution of rice. The present study was carried out to identify the genetic basis of the weedy rices distributed in various countries of the world. One hundred and fifty two strains of weedy rice collected from Bangladesh, Brazil, Bhutan, China, India, Japan, Korea, Nepal, Thailand and the USA were tested for variations in six morpho-physiological characteristics and in 14 isozyme loci. Twenty six weedy strains selected from the above materials were assayed for the Est-10 locus, six RAPD loci of the nuclear genome, and one chloroplast locus. From the results of multivariate analysis based on the morpho-physiological characteristics and the isozymes, weedy rice strains were classified into indica and japonica types, and each type was further divided into forms resembling cultivated and wild rice. Thus, four groups designated as I, II, III and IV were identified. Weedy strains of group I (indica-type similar to cultivars) were distributed mostly in temperate countries, group II (indica-type similar to wild rice) in tropical countries, group III (japonica-type similar to cultivars) in Bhutan and Korea, group IV ( japonica-type similar to wild rice) in China and Korea. In group I, classified as indica, several strains showed japonica-specific RAPD markers, while some others had japonica cytoplasm with indica-specific RAPD markers in a heterozygous state at several loci. One weedy strain belonging to group II showed a wild rice-specific allele at the Est-10 locus. However, in groups III and IV, no variation was ound either for the markers on Est-10 or for the RAPD loci tested. Judging from this study, weedy rice of group I might have originated at least partly from gene flow between indica and japonica, whereas that of group II most probably originated from gene flow between wild and cultivated indica rice. Weedy rice of group III is thought to have originated from old rice cultivars which had reverted to a weedy form, and that of group IV from gene flow between japonica cultivars and wild rice having japonica backgrounds. Received: 2 May 1996 / Accepted: 30 August 1996  相似文献   

4.
The characteristics of starch, such as gelatinization temperature (GT), apparent amylose content (AAC), pasting temperature (PT) and other physicochemical properties, determine the quality of various products of rice, e.g., eating, cooking and processing qualities. The GT of rice flour is controlled by the alk locus, which has been co-mapped to the starch synthase IIa (SSIIa) locus. In this study, we sequenced a 2,051 bp DNA fragment spanning part of intron 6, exon 7, intron 7, exon 8 and part of 3′ untranslated region of SSIIa for 30 rice varieties with diverse geographical distribution and variation in starch physicochemical properties. A total of 24 single nucleotide polymorphisms (SNPs) and one insertion/deletion (InDel) were identified, which could be classified into nine haplotypes. The mean pairwise nucleotide diversity π was 0.00292, and Watterson’s estimator θ was 0.00296 in this collection of rice germplasm. Tajima’s D test for selection showed no significant deviation from the neutral expectation (D = − 0.04612, P > 0.10). However, significant associations were found between seven of the SNPs and peak GT (T p) at P < 0.05, of which two contiguous SNPs (GC/TT) showed a very strong association with T p (P < 0.0001). With some rare exception, this GC/TT polymorphism alone can differentiate rice varieties with high or intermediate GT (possessing the GC allele) from those with low GT (possessing the TT allele). In contrast, none of these SNPs or InDel was significantly associated with amylose content. A further 509 rice varieties with known physicochemical properties (e.g., AAC and PT) and known alleles of other starch synthesizing genes were genotyped for the SSIIa GC/TT alleles. Association analysis indicated that 82% of the total variation of AAC in these samples could be explained by a (CT)n simple sequence repeat (SSR) and a G/T SNP of Waxy gene (Wx), and 62.4% of the total variation of PT could be explained by the GC/TT polymorphism. An additional association analysis was performed between these molecular markers and the thermal and retrogradation properties for a subset of 245 samples from the 509 rice varieties. The SSIIa GC/TT polymorphism explained more than 60% of the total variation in thermal properties, whereas the SSR and SNP of Wx gene explained as much as the SSIIa GC/TT of the total variation in retrogradation properties. Our study provides further support for the utilization of the GC/TT polymorphism in SSIIa. As shown in our study of 509 rice varieties, the GC/TT SNP could differentiate rice with high or intermediate GT from those with low GT in about 90% of cases. Using four primers in a single PCR reaction, the GC/TT polymorphism can be surveyed on a large scale. Thus, this SNP polymorphism can be very useful in marker-assisted selection for the improvement of GT and other physicochemical properties of rice.  相似文献   

5.
The effects of temperature on starch and amylose accumulation, fine structure of amylopectin and activities of some enzymes related to starch synthesis in developing rice endosperms was examined. Two early indica rice varieties were used, differing in amylose concentration (AC, %), namely Jia 935 (low AC) and Jia 353 (high AC). The results showed that the effects of high temperature on AC and amylopectin fine structure were variety-dependent. High temperature caused a reduction in amylose concentration and an increase in the short chain (CL<22) proportion of amylopectin for Jia 935; while opposite was true for Jia 353. High temperature also reduced and increased the activity of granule-bound starch synthase (GBSS) in Jia 935 and in Jia 353, respectively. This suggests that a change in the ratio of amylose/starch due to temperature was attributable to a change in GBSS activity. Moreover, obvious differences between the two rice varieties were detected in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (ADPG-Ppase), soluble starch synthase (SSS), starch branching enzyme (SBE), starch de-branching enzyme (SDBE) and starch phosphorylase (SPase) to high temperature. Accumulation rate of amylose was significantly and positively correlated with GBSS for Jia 935, but not for Jia 353. Amylose accumulation was also significantly and positively correlated with the activities of SDBE, SBE, ADPG-Ppase and SuSy for both varieties. The results suggest that the ratio of amylose to starch in rice endosperm is not only related to GBSS, but also affected by the activities of SDBE, SBE, ADPG-Ppase and SuSy.  相似文献   

6.
Physicochemical properties of storage starch largely determine rice grain quality and food characteristics. Therefore, modification of starch property is effective to fine‐tune cooked rice textures. To obtain new resources with modified starch property as breeding materials, we screened a mutant population of a japonica cultivar Nipponbare and found two independent mutant lines, altered gelatinization (age)1 and age2, with moderate changes in starch gelatinization property. A combination of conventional genetic analyses and the latest mapping method, MutMapPlus, revealed that both of these lines harbour novel independent mutant alleles of starch branching enzyme IIb (BEIIb) gene. In age1, amino acid substitution of Met‐723 to Lys completely abolished BEIIb enzyme activity without significant reduction in its protein level. A transposon insertion in an intron of BEIIb gene reduced BEIIb protein level and activity in age2. Production of a series of the mutant lines by combining age alleles and indica‐type starch synthase IIa allele established stepwise alteration of the physicochemical properties of starch including apparent amylose content, thermal property, digestibility by α‐amylase and branched structures of amylopectin. Consistent with the alteration of starch properties, the results of a sensory evaluation test demonstrated that warm cooked rice of the mutants showed a variety of textures without marked reduction in overall palatability. These results suggest that a series of the mutant lines are capable of manipulation of cooked rice textures.  相似文献   

7.
The cooking and eating quality of rice has attracted more attention recently. In a comprehensive effort to unravel its genetic basis, we conducted a genome-wide analysis of six traits representing the cooking and eating quality of rice grain, namely, amylose content (AC), gel consistency (GC), gelatinization temperature (GT), water absorption (WA), cooked rice elongation (CRE) and volume expansion (VE) using a DH population derived from the anther culture of an F1 hybrid between WYJ 2 (japonica) and Zhenshan 97B (indica). For each trait, one to three quantitative trait loci (QTL) were found, which were located on chromosomes 1, 2, 3, 6, 11. QTL analysis revealed a major QTL specifying GT, located at the interval RM276-RM121, which should be the same locus as the alkali degeneration gene (alk), while for each of the remaining five traits the QTL explaining the largest proportion of variance was located on the short arm of chromosome 6, centered at RM190 (found in the waxy gene). Our results, in combination with previous reports, further confirmed that either the waxy gene itself or a genomic region tightly linked to it plays a major role in determining the cooking and eating quality of rice.  相似文献   

8.
The genetic transformation efficiency of a rice variety is largely determined by its tissue culturability. Establishment of a highly efficient tissue-culture system has greatly accelerated the wide spread application of transgenic japonica varieties. However, such process for indica rice was hampered because this type of variety is recalcitrant to in vitro culture. This study aimed to map the quantitative trait loci (QTLs) for mature seed culturability using a chromosomal segment substitution lines (CSSL) population derived from a cross between an indica variety “Zhenshan 97B” and a japonica variety “Nipponbare”. The CSSLs consist of 139 lines each containing a single or a few introgression segments, and together covering the whole “Nipponbare” genome. Every CSSL was tested by culturing on the two medium systems developed for the respective indica and japonica parental varieties. The performance of culturability was evaluated by four indices: frequency of callus induction (CIF), callus subculture capability (CSC), frequency of plant regeneration (PRF) and the mean plantlet number per regenerated callus (MNR). All four traits displayed continuous variation among the CSSLs. With the culture system for japonica rice, three CIF QTLs, three CSC QTLs, three PRF QTLs and three MNR QTLs were detected. With the culture system for indica variety, six CIF QTLs, two CSC QTLs, three PRF QTLs and six MNR QTLs were identified, and these QTLs distributed on nine rice chromosomes. Two QTLs of CIF and two QTLs of MNR were detected in both the japonica and indica rice culture system. The correlation coefficients of all the four traits varied depending on the culture systems. These results provide the possibilities of enhancing the culturability of indica rice by marker-assisted breeding with those desirable alleles from the japonica. Lina Zhao and Hongju Zhou have contributed equally to this work.  相似文献   

9.
Although the overall structure of the chloroplast genome is generally conserved, several sequence variations have been identified that are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (GenBank: NC_017835 ) as a reference. Differential distribution of single‐nucleotide polymorphisms and INDELs across the rice chloroplast genome is suggestive of a region‐specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two aus type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that ‘Korean aus’ was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared the results to six rice chloroplast references. These data demonstrated that although nucleotide diversity is low in all strains tested, aus and indica have a higher nucleotide diversity than japonica.  相似文献   

10.
The cultivated rice (Oryza sativa L.) has two subspecies, indica and japonica. The japonica rice germplasm has a narrower genetic diversity compared to the indica subspecies. Rice breeders aim to develop new varieties with a higher yield potential, with enhanced resistances to biotic and abiotic stresses, and improved adaptation to environmental changes. In order to face some of these challenges, japonica rice germplasm will have to be diversified and new breeding strategies developed. Indica rice improvement could also profit from more “genepool mingling” for which japonica rice could play an important role. Interesting traits such as low-temperature tolerance, and wider climate adaptation could be introgressed into the indica subspecies. In the past decade, huge developments in rice genomics have expanded our available knowledge on this crop and it is now time to use these technologies for improving and accelerating rice breeding research. With the full sequence of the rice genome, breeders may take advantage of new genes. Also new genes may be discovered from the genepool of wild relatives, or landraces of the genus Oryza, and incorporated into elite japonica cultivars in a kind of “gene revolution” program. Expectedly, new technologies that are currently being optimized, aiming for novel gene discovery or for tracking the regions under selection, will be suggested as new breeding approaches. This paper revisits breeding strategies successfully employed in indica rice, and discusses their application in japonica rice improvement (e.g. ideotype breeding, wide hybridization and hybrid performance).  相似文献   

11.
Mutations in the maize gene sugary2 (su2) affect starch structure and its resultant physiochemical properties in useful ways, although the gene has not been characterized previously at the molecular level. This study tested the hypothesis that su2 codes for starch synthase IIa (SSIIa). Two independent mutations of the su2 locus, su2-2279 and su2-5178, were identified in a Mutator-active maize population. The nucleotide sequence of the genomic locus that codes for SSIIa was compared between wild type plants and those homozygous for either novel mutation. Plants bearing su2-2279 invariably contained a Mutator transposon in exon 3 of the SSIIa gene, and su2-5178 mutants always contained a small retrotransposon-like insertion in exon 10. Six allelic su2 mutations conditioned loss or reduction in abundance of the SSIIa protein detected by immunoblot. These data indicate that su2 codes for SSIIa and that deficiency in this isoform is ultimately responsible for the altered physiochemical properties of su2 mutant starches. A specific starch synthase isoform among several identified in soluble endosperm extracts was absent in su2-2279 or su2-5178 mutants, indicating that SSIIa is active in the soluble phase during kernel development. The immediate structural effect of the su2 mutations was shown to be increased abundance of short glucan chains in amylopectin and a proportional decrease in intermediate length chains, similar to the effects of SSII deficiency in other species.  相似文献   

12.
Asian rice, Oryza sativa L., is one of the most important crop species. Genetic analysis has established that rice consists of several genetically differentiated variety groups, with two main groups, namely, O. sativa ssp. japonica kata and ssp. indica kata. To determine the genetic diversity of indica and japonica rice, 45 rice varieties, including domesticated rice and Asia common wild rice (O. rufipogon Griff.), were analyzed using sequence-related amplified polymorphism, target region amplified polymorphism, simple sequence repeat, and intersimple sequence repeat marker systems. A total of 90 indica- and japonica-specific bands between typical indica and japonica subspecies were identified, which greatly helped in determining whether domesticated rice is of the indica or japonica type, and in analyzing the consanguinity of hybrid rice with japonica, which were bred from indica and japonica crossed offspring. These specific bands were both located in the coding and non-encoding region, and usually connected with quantitative trait loci. Utilizing the indica-japonica-specific markers, japonica consanguinity was detected in sterile hybrid rice lines. Many indica-japonica-specific bands were found in O. rufipogon. This result supports the multiple-origin model for domesticated rice. Javanica exhibited a greater number of indica-japonica-specific bands, which indicates that it is a subspecies of O. sativa L.  相似文献   

13.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

14.
15.
通过分析籼稻93-11和粳稻培矮64S的叶绿体全基因组,优化和构建了籼粳分化的叶绿体分子标记ORF100和ORF29-TrnCGCA的多重PCR。应用这个多重PCR对200余份世界各地杂草稻和其它水稻材料进行分析。结果表明:杂草稻中有明显的叶绿体籼粳分化,表现出明显的地域性,且与传统的中国栽培稻的南籼北粳能较好的对应。推测粳型杂草稻可能是栽培稻突变或粳型水稻(作母本)与其它类型水稻材料杂交而形成的。  相似文献   

16.
17.
In order to examine whether alterations in the supply of precursor molecules into the starch biosynthetic pathway affected various characteristics of the starch, starch was isolated from potato (Solanum tuberosum L.) tubers containing reduced amounts of the enzyme ADP-glucose pyrophosphorylase (AGPase). It was found that although the type of crystalline polymorph in the starch was not altered, the amylose content was severely reduced. In addition, amylopectin from the transgenic plants accumulated more relatively short chains than that from control plants and the sizes of starch granules were reduced. The starch granules from the transgenic plants contained a greater amount of granule-bound starch synthase enzyme, which led to an increase in the maximum activity of the enzyme per unit starch tested. The K m for ADP-glucose was, at most, only slightly altered in the transgenic lines. Potato plants containing reduced AGPase activity were also transformed with a bacterial gene coding for AGPase to test whether this enzyme can incorporate phosphate monoesters into amylopectin. A slight increase in phosphate contents in the starch in comparison with the untransformed control was found, but not in comparison with starch from the line with reduced AGPase activity into which the bacterial gene was transformed. Received: 2 February 1999 / Accepted: 25 March 1999  相似文献   

18.
19.
Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population‐selective or ‐adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.  相似文献   

20.
Genetic loci influencing traits important to humans have been selected during crop domestication. The starch properties of rice influence the ease of cooking and attractiveness of rice as a human food. Starch biosynthesis genes likely to influence starch properties in the grain were compared in wild and domesticated rice genotypes. Sequence variation was investigated in starch biosynthesis gene exons that have been reported to have a direct influence on rice amylose content, gelatinization temperature, and amylopectin chain length. Exons 6 and 10 of GBSSI, exon 8 of SSIIa and exons 11, 13, 14 and 16 of SBEIIb were amplified and sequenced from 13 wild Oryza species encompassing genome types AA to HHJJ. Thirty two single nucleotide polymorphisms (SNPs) were identified in the exons of GBSSI; 176 in exon 8 of SSIIa, and 43 in SBEIIb, giving a total of 251 SNPs among the species. Eighty six of these SNP caused changes in the encoded amino acid, of which 28 were missense mutations that affected highly conserved amino acids within the protein sequence of GBSSI, SSIIa or SBEIIb. Two indels were identified in Potamophila parviflora, a close relative of Zizania palustris, a North American native wild rice. Most of the nucleotide variations and non-conservative changes were observed in the genomes other than the AA genome species. This represents a genetic resource for use in rice starch manipulation. The impact of human selection at these loci can be deduced by comparison of modern cultivated genotypes with their wild progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号