首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mean solution conformation of tetrapeptide fragments spanning the hinge region of human IgA1 was investigated by CD and 13C-NMR methods. Distinct conformational differences for the partial sequences of IgA1 were found. In a series of tetrapeptides having the Thr-Pro-Pro-Thr sequence, the Pro-Pro fragment was ordered to the structure of a type II polyproline helix, but with unordered forms prevailing in the equilibria. In the case of the Pro-Pro-Thr-Pro sequence, a distinct preference for the beta-turn conformation was found. Acetylation of this tetrapeptide shifts the equilibrium towards unordered forms containing some elements of the type II polyproline helix. The peptide Thr-Pro-Ser-Pro exists predominantly in the beta-turn conformation whereas Pro-Ser-Pro-Ser-NH2 has, for the most part an unordered conformation.  相似文献   

2.
The salt-extractable hydroxyproline-rich cell wall glycoprotein from carrot (Daucus carota L.) roots is composed of 35% (w/w) protein, 3% (w/w) galactose, and 62% (w/w) arabinose. The arabinose is attached to hydroxyproline as tetra- and trisaccharides. The circular dichroism of the glycoprotein shows that it is completely in the polyproline II conformation. After deglycosylation of the glycoprotein, the polyproline II conformation of the peptide backbone was lost. This indicates that the carbohydrate reinforces the polyproline II conformation.  相似文献   

3.
The structural requirements for the antibacterial activity of a pseudosymmetric 13-residue peptide, tritrypticin, were analyzed by combining pattern recognition in protein structures, the structure-activity knowledge-base, and circular dichroism. The structure-activity analysis, based on various deletion analogs, led to the identification of two minimal functional peptides, which by themselves exhibit adequate antibacterial activity against Escherichia coli and Salmonella typhimurium. The common features between these two peptides are that they both share an aromatic-proline-aromatic (ArProAr) sequence motif, and their sequences are retro with respect to one another. The pattern searches in protein structure data base using the ArProAr motif led to the identification of two distinct conformational clusters, namely polyproline type II and beta-turn, which correspond to the observed solution structures of the two minimal functional analogs. The role of different residues in structure and function of tritrypticin was delineated by analyzing antibacterial activity and circular dichroism spectra of various designed analogs. Three main results arise from this study. First, the ArProAr sequence motif in proteins has definitive conformational features associated with it. Second, the two minimal bioactive domains of tritrypticin have entirely different structures while having equivalent activities. Third, tritrypticin has a beta-turn conformation in solution, but the functionally relevant conformation of this gene-encoded peptide antibiotic may be an extended polyproline type II.  相似文献   

4.
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II consists of tandemly repeated copies of a heptapeptide with the Y(1)S(2)P(3)T(4)S(5)P(6)S(7) consensus sequence. This repeat contains two overlapping SPXX motifs that can adopt a beta-turn conformation. In addition, each CTD repeat contains the PXXP sequence characteristic of the left-handed helix of polyproline II (P(II)) found in SH3 domain ligands and the PXY sequence that is the target for WW domains. We have studied CTD fragments using circular dichroism (CD) to characterize the conformation of the CTD in water and in the hydrogen bond-promoting solvent trifluoroethanol (TFE). In water, an eight-repeat fragment is predominantly unordered, but at 32 degrees C has P(II) and beta-turn contents estimated to be about 15 % and less than 10 %, respectively. In 90 % TFE, the beta-turn fraction is estimated to be about 75 %, the remainder being unordered and P(II) conformations. The Tyr side-chains are ordered to a significant extent in 90 % TFE. Replacement of the fully conserved Pro residues by alpha-aminoisobutyric acid leads to a large increase in beta-turn. Replacement of Ser2 by Ala does not substantially alter the CTD conformation in water or TFE. Ser5 replacement by Ala increases the P(II) content in water and affects the conformation in TFE-rich solutions. Phosphorylation of Ser2 and Ser5 has little effect in water, but Ser2 affects the conformation in TFE-rich solution in much the same way as Ser5-->Ala substitution. The CD of the full-length murine CTD in water is similar to that of the eight-repeat fragment, indicating little difference in conformation with increasing chain length beyond eight repeats. The roles of P(II) and beta-turn in the interaction of CTD with its target proteins (mediator and RNA-processing components) are discussed. The most likely interactions are between P(II) and WW or SH3 domains, or with some unknown P(II)-binding motif.  相似文献   

5.
The structural features related to the biologic activities of a potent, response-selective decapeptide agonist of human C5a, YSFKPMPLaR (C5a65-74, Y65, F67, P69, P71, D-Ala73), were identified by NMR analysis in H2O, DMSO and TFE. This investigation showed that the KPM residues in H2O and the SFKPM residues in DMSO exhibited an extended backbone conformation, whereas a twisted conformation was found in this region in TFE. In H2O, the C-terminal region (PLaR) adopted a distorted type II beta-turn or a type II/V beta-turn. In the type IIN beta-turn, Leu72 exhibited a conformation typical of a type II beta-turn, whereas D-Ala73 exhibited a conformation characteristic of a type V beta-turn. Furthermore, a gamma-turn involving residues LaR overlapped with the type II/V beta-turn. In DMSO, the C-terminal region had the analogous turn-like motif (type II/V beta-turn overlapping with gamma-turn) found in H2O. In TFE, no beta-turn motifs were formed by the PLaR residues. These turn-like motifs in the C-terminal region of the peptide in both H2O and DMSO were in agreement with the biologically important conformations predicted earlier by a structure-function analysis of a related panel of decapeptide analogs. The motifs determined by the NMR analysis of YSFKPMPLaR in H2O and DMSO may represent structural elements important for C5a agonist activity and thus can be used to design the next generation of C5a agonist, partial agonist and antagonist analogs.  相似文献   

6.
The N-terminal portion of HIV-1 Tat covering residues 1-9 is a competitive inhibitor of dipeptidyl peptidase IV (DP IV). We have used 1H NMR techniques, coupled with molecular dynamics methods, to determine the conformation of this peptide in the three diverse media: DMSO-d6, water (pH 2.7) and 40% HFA solution. The results indicate that in both DMSO-d6 and HFA the peptide has a tendency to acquire a type I beta-turn around the segment Asp5-Pro6-Asn7-IIe8. The N-terminal end is seen to be as a random coil. In water, the structure is best described as a left-handed polyproline type II (PPII) helix for the mid segment region Asp2 to Pro6. The structures obtained in this study have been compared with an earlier report on Tat (1-9).  相似文献   

7.
Evidence for a gamma-turn motif in antifreeze glycopeptides.   总被引:2,自引:0,他引:2       下载免费PDF全文
Knowledge of the secondary structure of antifreeze peptides (AFPs) and glycopeptides (AFGPs) is crucial to understanding the mechanism by which these molecules inhibit ice crystal growth. A polyproline type II helix is perhaps the most widely accepted conformation for active AFGPs; however, random coil and alpha-helix conformations have also been proposed. In this report we present vibrational spectroscopic evidence that the conformation of AFGPs in solution is not random, not alpha-helical, and not polyproline type II. Comparison of AFGP amide vibrational frequencies with those observed and calculated for beta and gamma-turns in other peptides strongly suggests that AFGPs contain substantial turn structure. Computer-generated molecular models were utilized to compare gamma-turn, beta-turn, and polyproline II structures. The gamma-turn motif is consistent with observed amide frequencies and results in a molecule with planar symmetry with respect to the disaccharides. This intriguing conformation may provide new insight into the unusual properties of AFGPs.  相似文献   

8.
Abstract The structure of extensin is described in detail. It has a hydroxyproline-rich backbone, which contains repeating peptides glycosylated by short side chains and it adopts a polyproline II helical conformation. The glycoprotein is synthesized intracellularly and soluble precursors are secreted to the wall, where they are bound, perhaps, by the formation of isodityrosine cross-links. The various hypotheses, including the most recent ‘warp and weft’ model, which have been suggested to explain the attachment of extensin to the other wall polymers are discussed. The possible functions of extensin in defence and in the control of extension growth are described in addition to its probable structural role. Other glycoproteins which resemble extensin are also mentioned.  相似文献   

9.
Linker segments assuming the polyproline II type conformation within DNA-protein complexes were sought in protein and linker databases. Seventy-three linker-DNA complexes were found. The mean length of polyproline II type segments was six residues, and prolines were not predominant there. It was shown that the symmetrical position of prolines in these segments prevented the formation of the cooperative water network involving amide groups. An example of specific proline location in some motility apparatus proteins is presented.  相似文献   

10.
11.
Our abilities to predict three-dimensional conformation of a polypeptide, given its amino acid sequence, remain limited despite advances in structure analysis. Analysis of structures and sequences of protein families with similar secondary structural elements, but varying topologies, might help in addressing this problem. We have studied the small beta-barrel class of proteins characterized by four strands (n = 4) and a shear number of 8 (S = 8) to understand the principles of barrel formation. Multiple alignments of the various protein sequences were generated for the analysis. Positional entropy, as a measure of residue conservation, indicated conservation of non-polar residues at the core positions. The presence of a type II beta-turn among the various barrel proteins considered was another strikingly invariant feature. A conserved glycyl-aspartyl dipeptide at the beta-turn appeared to be important in guiding the protein sequence into the barrel fold. Molecular dynamics simulations of the type II beta-turn peptide suggested that aspartate is a key residue in the folding of the protein sequence into the barrel. Our study suggests that the conserved type II beta-turn and the non-polar residues in the barrel core are crucial for the folding of the protein's primary sequence into the beta-barrel conformation.  相似文献   

12.
The polyproline II (PPII) conformation of protein backbone is an important secondary structure type. It is unusual in that, due to steric constraints, its main-chain hydrogen-bond donors and acceptors cannot easily be satisfied. It is unable to make local hydrogen bonds, in a manner similar to that of alpha-helices, and it cannot easily satisfy the hydrogen-bonding potential of neighboring residues in polyproline conformation in a manner analogous to beta-strands. Here we describe an analysis of polyproline conformations using the HOMSTRAD database of structurally aligned proteins. This allows us not only to determine amino acid propensities from a much larger database than previously but also to investigate conservation of amino acids in polyproline conformations, and the conservation of the conformation itself. Although proline is common in polyproline helices, helices without proline represent 46% of the total. No other amino acid appears to be greatly preferred; glycine and aromatic amino acids have low propensities for PPII. Accordingly, the hydrogen-bonding potential of PPII main-chain is mainly satisfied by water molecules and by other parts of the main-chain. Side-chain to main-chain interactions are mostly nonlocal. Interestingly, the increased number of nonsatisfied H-bond donors and acceptors (as compared with alpha-helices and beta-strands) makes PPII conformers well suited to take part in protein-protein interactions.  相似文献   

13.
More than 70 allatostatins have been isolated from various insects and there is interest in the determination of their active conformation. We have synthesized Dippu-AST 1 (originally isolated from the cockroach Blattella germanica) and studied its conformation in solution by 2-D NMR and molecular modeling. Dippu-AST 1 belongs to the cockroach-type ASTs that have Y/FXFGL-NH(2) as the common C-terminal sequence. We found that Dippu-AST 1 forms a type I' beta-turn conformation in DMSO. We also studied the conformations of Dippu-AST 1 and six cockroach-type allatostatins in water using the molecular dynamics method. When the X amino acid in the consensus sequence Y/FXFGL-NH(2) is Ala or Ser, the allatostatin can form a typical type II beta-turn. If the X is Asp or Asn whose side chain contains a carbonyl, the allatostatin can form a type I, I' or IV beta-turn conformation; if the X is Gly, a closer gamma-turn is adopted. Our study indicates that the turn conformation is ubiquitous in cockroach-type allatostatins.  相似文献   

14.
Human salivary mucin (MUC7) is characterized by a single polypeptide chain of 357 aa. Detailed analysis of the derived MUC7 peptide sequence reveals five distinct regions or domains: (1) an N-terminal basic, histatin-like domain which has a leucine-zipper segment, (2) a moderately glycosylated domain, (3) six heavily glycosylated tandem repeats each consisting of 23 aa, (4) another heavily glycosylated MUC1- and MUC2-like domain, and (5) a C-terminal leucine-zipper segment. Chemical analysis and semi-empirical prediction algorithms for O-glycosylation suggested that 86/105 (83%) Ser/Thr residues were O-glycosylated with the majority located in the tandem repeats. The high (~25%) proline content of MUC7 including 19 diproline segments suggested the presence of polyproline type structures. CD studies of natural and synthetic diproline-rich peptides and glycopeptides indicated that polyproline type structures do play a significant role in the conformational dynamics of MUC7. In addition, crystal structure analysis of a synthetic diproline segment (Boc-Ala-Pro-OBzl) revealed a polyproline type II extended structure. Collectively, the data indicate that the polyproline type II structure, dispersed throughout the tandem repeats, may impart a stiffening of the backbone and could act in consort with the glycosylated segments to keep MUC7 in a semi-rigid, rod shaped conformation resembling a ‘bottle-brush’ model.  相似文献   

15.
The preferred conformations of the active diuretic insect kinin pentapeptide analogue Phe-Phe-Aib-Trp-Gly-NH2 were studied using nmr spectroscopy and molecular modeling. Structure sets consistent with rotating frame nuclear Overhauser effect spectroscopy distance constraints obtained by restrained simulated annealing in vacuo indicate a predominant population of a type II beta-turn involving the Phe1-Trp4 region. An equilibrium between this type II and a type I beta-turn formed by residues Phe2 and Gly5 was observed in a 5 ns restrained molecular dynamics simulation using the implicit generalized Born solvent accessible surface area (GB/SA) solvation model. When subjected to 500 ps dynamics with explicit water both beta-turn folds were conserved throughout the simulations. The results obtained with implicit and explicit solvation models are compared, and their consistency with the nmr observations is discussed. The behavior of the linear pentapeptide in this study is in agreement with an earlier report on the consensus conformation of the insect kinin active core derived from analysis of cyclic active analogues.  相似文献   

16.
The high molecular weight (HMW) subunit group of wheat seed storage proteins impart elasticity to wheat doughs and glutens. They consist of three domains: non-repetitive N- and C-terminal domains, which contain cysteine residues for covalent cross-linking, and a central domain consisting of repeated sequences. The circular dichroism and infrared (IR) spectra of an intact HMW subunit were compared with those of a peptide corresponding to the central repetitive domain expressed in Escherichia coli. This allowed the structure of the central domain to be studied in the absence of the N- and C-terminal domains and the contributions of these domains to the structure of the whole protein to be determined. In solution the peptide showed the presence of beta-turns and polyproline II-like structure. Variable temperature studies indicated an equilibrium between these two structures, the polyproline II conformation predominating at low temperatures and the beta-turn conformation at higher temperatures. IR in the hydrated solid state also indicated the presence of beta-turns and intermolecular beta-sheet structures. In contrast, spectroscopy of the whole subunit showed the presence of alpha-helix in the N- and C-terminal domains. The content of beta-sheet was also higher in the whole subunit, indicating that the N- and C-terminal domains may promote the formation of intermolecular beta-sheet structures between the repetitive sequences, perhaps by aligning the molecules to promote interaction.  相似文献   

17.
The conformation of the tridecapeptide alpha-factor of the yeast Saccharomyces cerevisiae was examined in both solution and in the presence of lipid vesicles. CD, differential scanning calorimetry, and phosphorus nmr all indicate that this mating pheromone interacts with lipid vesicles. In both aqueous and organic solution the alpha-factor is a flexible molecule that exhibits features of a type II beta-turn spanning the center of the peptide. Two-dimensional Nuclear Overhauser enhancement spectroscopy gives evidence that the beta-turn is stabilized on interaction of the peptide with lipid vesicles. Our current belief is that the beta-turn may play an important role in the biologically active conformation of the alpha-factor.  相似文献   

18.
Jha AK  Colubri A  Zaman MH  Koide S  Sosnick TR  Freed KF 《Biochemistry》2005,44(28):9691-9702
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent with the polyproline II conformation rather than alpha or beta conformations. The preference for the polyproline II conformation is independent of the degree of solvation. In conjunction with a new masking procedure, the frequencies in our coil library accurately recapitulate both helix and sheet frequencies for the amino acids in structured regions, as well as polyproline II propensities. Therefore, structural propensities for alpha-helices and beta-sheets and for polyproline II conformations in unfolded peptides can be rationalized solely by local effects. In addition, these propensities are often strongly affected by both the chemical nature and the conformation of neighboring residues, contrary to the Flory isolated residue hypothesis.  相似文献   

19.
Peptide T (H-Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr-OH), a fragment of HIV gp120, has been reported to inhibit binding of the virus to the CD4 receptor. The peptide assumes a beta-turn secondary structure, and stabilization of the conformation may increase the biological activity. We synthesized the octapeptide and its C-terminal pentapeptide fragment, unmodified and glycosylated, when monosaccharides were walked through the molecules. Incorporation of the sugar into the longer peptide resulted in the stabilization of the type I (III) beta-turn, as indicated by circular dichroism measurements. While N-terminal glycosylation of the shorter peptide also stabilized the type I (III) beta-turn, the circular dichroism spectra revealed slightly different type II beta-turn structures when the carbohydrate moiety was incorporated into mid-chain or C-terminal positions. Modification of biologically active reverse-turn structures by glycosylation offers a viable alternative to the peptide mimetics approach in drug design.  相似文献   

20.
The high molecular weight (HMW) proteins from wheat contain a repetitive domain that forms 60-80% of their sequence. The consensus peptides PGQGQQ and GYYPTSPQQ form more than 90% of the domain; both are predicted to adopt beta-turn structure. This paper describes the structural characterization of these consensus peptides and forms the basis for the structural characterization of the repetitive HMW domain, described in the companion paper. The cyclic peptides cyclo-[PGQGQQPGQGQQ] (peptide 1), cyclo-[GYYPTSPQQGA] (peptide 2), and cyclo-[PGQGQQGYYPTSPQQ] (peptide 3) were prepared using a novel synthesis route. In addition, the linear peptides (PGQGQQ)n (n = 1, 3, 5) were prepared. CD, FTIR, and NMR data demonstrated a type II beta-turn structure at QPGQ in the cyclic peptide 1 that was also observed in the linear peptides 9PGQGQQ)n. A type I beta-turn was observed at YPTS and SPQQ in peptides 2 and 3, with additional beta-turns of either type I or II at GAGY (peptide 2) and QQGY (peptide 3). The proline in YPTS showed considerable cis/trans isomerization, with up to 50% of the population in the cis-conformation; the other prolines were more than 90% in the trans conformation. The conversion from trans to cis destroys the type I beta-turn at YPTS, but leads to an increase in turn character at SPQQ and GAGY (peptide 2) or QQGY (peptide 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号