首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Low concentrations of the RNA polymerase inhibitor rifampin added to an exponentially growing culture of Bacillus subtilis led to an instant inhibition of growth. Survival experiments revealed that during the growth arrest the cells became tolerant to the antibiotic and the culture was able to resume growth some time after rifampin treatment. L-[(35)S]methionine pulse-labeled protein extracts were separated by two-dimensional polyacrylamide gel electrophoresis to investigate the change in the protein synthesis pattern in response to rifampin. The sigma(B)-dependent general stress proteins were found to be induced after treatment with the antibiotic. Part of the oxidative stress signature was induced as indicated by the catalase KatA and MrgA. The target protein of rifampin, the beta subunit (RpoB) of the DNA-dependent RNA polymerase, and the flagellin protein Hag belonging to the sigma(D) regulon were also induced. The rifampin-triggered growth arrest was extended in a sigB mutant in comparison to the wild-type strain, and the higher the concentration, the more pronounced this effect was. Activity of the RsbP energy-signaling phosphatase in the sigma(B) signal transduction network was also important for this protection against rifampin, but the RsbU environmental signaling phosphatase was not required. The sigB mutant strain was less capable of growing on rifampin-containing agar plates. When plated from a culture that had already reached stationary phase without previous exposure to the antibiotic during growth, the survival rate of the wild type exceeded that of the sigB mutant by a factor of 100. We conclude that the general stress response of B. subtilis is induced by rifampin depending on RsbP activity and that loss of SigB function causes increased sensitivity to the antibiotic.  相似文献   

3.
4.
sigma B is a secondary sigma factor that controls the general stress regulon in Bacillus subtilis. The regulon is activated when sigma B is released from a complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate mechanisms cause sigma B release: an ATP-responsive mechanism that correlates with nutritional stress and an ATP-independent mechanism that responds to environmental insult (e.g., heat shock and ethanol treatment). ATP levels are thought to directly affect RsbW's binding preference. Low levels of ATP cause RsbW to release sigma B and bind to an alternative protein (RsbV), while high levels of ATP favor RsbW-sigma B complex formation and inactivation of RsbV by an RsbW-dependent phosphorylation. During growth, most of the RsbV is phosphorylated (RsbV-P) and inactive. Environmental stress induces the release of sigma B and the formation of the RsbW-RsbV complex, regardless of ATP levels. This pathway requires the products of additional genes encoded within the eight-gene operon (sigB) that includes the genes for sigma B, RsbW, and RsbV. By using isoelectric focusing techniques to distinguish RsbV from RsbV-P and chloramphenicol treatment or pulse-chase labeling to identify preexisting RsbV-P, we have now determined that stress induces the dephosphorylation of RsbV-P to reactivate RsbV. RsbV-P was also found to be dephosphorylated upon a drop in intracellular ATP levels. The stress-dependent and ATP-responsive dephosphorylations of RsbV-P differed in their requirements for the products of the first four genes (rsbR, -S, -T, and -U) of the sigB operon. Both dephosphorylation reactions required at least one of the genes included in a deletion that removed rsbR, -S, and -T; however, only an environmental insult required RsbU to reactivate RsbV.  相似文献   

5.
Sigma factor B (SigB) is the central regulator of the general stress response in Bacillus subtilis and regulates a group of genes in response to various stressors, known as the SigB regulon members. Genes that are directly regulated by SigB contain a promotor binding motif (PBM) with a previously identified consensus sequence. In this study, refined SigB PBMs were derived and different spacer compositions and lengths (N12-N17) were taken into account. These were used to identify putative SigB-regulated genes in the B. subtilis genome, revealing 255 genes: 99 had been described in the literature and 156 genes were newly identified, increasing the number of SigB putative regulon members (with and without a SigB PBM) to >?500 in B. subtilis. The 255 genes were assigned to five categories (I-V) based on their similarity to the original SigB consensus sequences. The functionalities of selected representatives per category were assessed using promoter-reporter fusions in wt and ΔsigB mutants upon exposure to heat, ethanol, and salt stress. The activity of the PrsbV (I) positive control was induced upon exposure to all three stressors. PytoQ (II) showed SigB-dependent activity only upon exposure to ethanol, whereas PpucI (II) with a N17 spacer and PylaL (III) with a N16 spacer showed mild induction regardless of heat/ethanol/salt stress. PywzA (III) and PyaaI (IV) displayed ethanol-specific SigB-dependent activities despite a lower-level conserved ??10 binding motif. PgtaB (V) was SigB-induced under ethanol and salt stress while lacking a conserved ??10 binding region. The activities of PygaO and PykaA (III) did not show evident changes under the conditions tested despite having a SigB PBM that highly resembled the consensus. The identified extended SigB regulon candidates in B. subtilis are mainly involved in coping with stress but are also engaged in other cellular processes. Orthologs of SigB regulon candidates with SigB PBMs were identified in other Bacillales genomes, but not all showed a SigB PBM. Additionally, genes involved in the integration of stress signals to activate SigB were predicted in these genomes, indicating that SigB signaling and regulon genes are species-specific. The entire SigB regulatory network is sophisticated and not yet fully understood even for the well-characterized organism B. subtilis 168. Knowledge and information gained in this study can be used in further SigB studies to uncover a complete picture of the role of SigB in B. subtilis and other species.  相似文献   

6.
7.
8.
9.
10.
RsbU is a positive regulator of the activity of sigmaB, the general stress-response sigma factor of Gram+ microorganisms. The N-terminal domain of this protein has no significant sequence homology with proteins of known function, whereas the C-terminal domain is similar to the catalytic domains of PP2C-type phosphatases. The phosphatase activity of RsbU is stimulated greatly during the response to stress by associating with a kinase, RsbT. This association leads to the induction of sigmaB activity. Here we present data on the activation process and demonstrate in vivo that truncations in the N-terminal region of RsbU are deleterious for the activation of RsbU. This conclusion is supported by comparisons of the phosphatase activities of full-length and a truncated form of RsbU in vitro. Our determination of the crystal structure of the N-terminal domain of RsbU from Bacillus subtilis reveals structural similarities to the regulatory domains from ubiquitous protein phosphatases and a conserved domain of sigma-factors, illuminating the activation processes of phosphatases and the evolution of "partner switching." Finally, the molecular basis of kinase recruitment by the RsbU phosphatase is discussed by comparing RsbU sequences from bacteria that either possess or lack RsbT.  相似文献   

11.
12.
sigma B is a secondary sigma factor that controls the general stress response in Bacillus subtilis. sigma B-dependent genes are activated when sigma B is released from an inhibitory complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate pathways, responding either to a drop in intracellular ATP levels or to environmental stress (e.g., heat, ethanol, or salt), cause the release of sigma B from RsbW. rsbR, rsbS, rsbT, and rsbU are four genes now recognized as the upstream half of an operon that includes sigB (sigma B) and its principal regulators. Using reporter gene assays, we find that none of these four genes are essential for stationary-phase (i.e., ATP-dependent) activation of sigma B, but rsbU and one or more of the genes contained within an rsbR,S,T deletion are needed for stress induction of sigma B. In other experiments, Western blot (immunoblot) analyses showed that the levels of RsbR, RsbS, Rsb, and RsbU, unlike those of the sigB operon's four downstream gene products (RsbV, RsbW, RsbX and sigma B), are not elevated during sigma B activation. Gel filtration and immunoprecipitation studies did not reveal the formation of complexes between any of the four upstream sigB operon products and the products of the downstream half of the operon. Much of the detectable RsbR, RsbS, RsbT, and RsbU did, however, fractionate as a large-molecular-mass (approximately 600-kDa) aggregate which was excluded from our gel filtration matrix. The downstream sigB operon products were not present in this excluded material. The unaggregated RsbR, RsbS, and RsbU, which were retarded by the gel matrix, elated from the column earlier than expected from their molecular weights. The RsbR and RsbS fractionation profile was consistent with homodimers (60 and 30 kDa, respectively), while the RsbU appeared larger, suggesting a protein complex of approximately 90 to 100 kDa.  相似文献   

13.
The alternative sigma factor sigmaB of Bacillus subtilis is required for the induction of approximately 100 genes after the imposition of a whole range of stresses and energy limitation. In this study, we investigated the impact of a null mutation in sigB on the stress and starvation survival of B. subtilis. sigB mutants which failed to induce the regulon following stress displayed an at least 50- to 100-fold decrease in survival of severe heat (54 degrees C) or ethanol (9%) shock, salt (10%) stress, and acid (pH 4.3) stress, as well as freezing and desiccation, compared to the wild type. Preloading cells with sigmaB-dependent general stress proteins prior to growth-inhibiting stress conferred considerable protection against heat and salt. Exhaustion of glucose or phosphate induced the sigmaB response, but surprisingly, sigmaB did not seem to be required for starvation survival. Starved wild-type cells exhibited about 10-fold greater resistance to salt stress than exponentially growing cells. The data argue that the expression of sigmaB-dependent genes provides nonsporulated B. subtilis cells with a nonspecific multiple stress resistance that may be relevant for stress survival in the natural ecosystem.  相似文献   

14.
Sigma(B) is an alternative sigma factor that controls the general stress response in Bacillus subtilis. In the absence of stress, sigma(B) is negatively regulated by anti-sigma factor RsbW. RsbW is also a protein kinase which can phosphorylate RsbV. When cells are stressed, RsbW binds to unphosphorylated RsbV, produced from the phosphorylated form of RsbV by two phosphatases (RsbU and RsbP) which are activated by stress. We now report the values of the K(m) for ATP and the K(i) for ADP of RsbW (0.9 and 0.19 mM, respectively), which reinforce the idea that the kinase activity of RsbW is directly regulated in vivo by the ratio of these nucleotides. RsbW, purified as a dimer, forms complexes with RsbV and sigma(B) with different stoichiometries, i.e., RsbW(2)-RsbV(2) and RsbW(2)-sigma(B)(1). As determined by surface plasmon resonance, the dissociation constants of the RsbW-RsbV and RsbW-sigma(B) interactions were found to be similar (63 and 92 nM, respectively). Nonetheless, an analysis of the complexes by nondenaturing polyacrylamide gel electrophoresis in competition assays suggested that the affinity of RsbW(2) for RsbV is much higher than that for sigma(B). The intracellular concentrations of RsbV, RsbW (as a monomer), and sigma(B) measured before stress were similar (1.5, 2.6, and 0.9 micro M, respectively). After ethanol stress they all increased. The increase was greatest for RsbV, whose concentration reached 13 micro M, while those of RsbW (as a monomer) and sigma(B) reached 11.8 and 4.9 micro M, respectively. We conclude that the higher affinity of RsbW for RsbV than for sigma(B), rather than a difference in the concentrations of RsbV and sigma(B), is the driving force that is responsible for the switch of RsbW to unphosphorylated RsbV.  相似文献   

15.
Höper D  Bernhardt J  Hecker M 《Proteomics》2006,6(5):1550-1562
The adaptation to osmotic stress is crucial for growth and survival of Bacillus subtilis in its natural ecosystem. Dual channel imaging and warping of 2-D protein gels were used to visualize global changes in the protein synthesis pattern of cells in response to osmotic stress (6% NaCl). Many vegetative enzymes were repressed in response to salt stress and derepressed after resumption of growth. The enzymes catalyzing the metabolic steps from glucose to 2-oxoglutarate, however, were almost constantly synthesized during salt stress despite the growth arrest. This indicates an enhanced need for the proline precursor glutamate. The synthesis of enzymes involved in sulfate assimilation and in the formation of Fe-S clusters was also induced, suggesting an enhanced need for the formation or repair of Fe-S clusters in response to salt stress. One of the most obvious changes in the protein synthesis profile can be followed by the very strong induction of the SigB regulon. Furthermore, members of the SigW regulon and of the PerR regulon, indicating oxidative stress after salt challenge, were also induced. This proteomic approach provides an overview of cell adaptation to an osmotic upshift in B. subtilis visualizing the most dramatic changes in the protein synthesis pattern.  相似文献   

16.
To enhance the production of isoprene, a volatile 5-carbon hydrocarbon, in the Gram-positive spore-forming rod-shaped bacterium Bacillus subtilis, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr) were overexpressed in B. subtilis DSM 10. For the strain that overexpresses Dxs, the yield of isoprene was increased 40% over that by the wild-type strain. In the Dxr overexpression strain, the level of isoprene production was unchanged. Overexpression of Dxr together with Dxs showed an isoprene production level similar to that of the Dxs overproduction strain. The effects of external factors, such as stress factors including heat (48°C), salt (0.3 M NaCl), ethanol (1%), and oxidative (0.005% H(2)O(2)) stress, on isoprene production were further examined. Heat, salt, and H(2)O(2) induced isoprene production; ethanol inhibited isoprene production. In addition, induction and repression effects are independent of SigB, which is the general stress-responsive alternative sigma factor of Gram-positive bacteria.  相似文献   

17.
18.
SigmaB, the general stress response sigma factor of Bacillus subtilis, is regulated by the products of seven genes (rsbR, S, T, U, V, W, and X) with which it is cotranscribed. Biochemical techniques previously revealed physical associations among RsbW, RsbV, and sigmaB but failed to detect interactions of RsbR, S, T, U, or X with each other or RsbV, RsbW, or sigmaB. Using the yeast two-hybrid system, we have now obtained evidence for such interactions. The yeast reporter system was activated when RsbS was paired with either RsbR or RsbT, RsbR was paired with RsbT, and RsbV was paired with either RsbU or RsbW. In addition, RsbW2 and RsbR2 dimer formation was detected. RsbX failed to show interactions with itself or any of the other sigB operon products.  相似文献   

19.
The RsbT serine kinase has two known functions in the signal transduction pathway that activates the general stress factor σB of Bacillus subtilis . First, RsbT can phosphorylate and inactivate its specific antagonist protein, RsbS. Second, upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating a signalling cascade that ultimately activates σB. Here we describe a mutation that separates these two functions of RsbT. Although the mutant RsbT protein had essentially no kinase activity, it still retained the capacity to stimulate the RsbU phosphatase in vitro and to activate σB when overexpressed in vivo . These results support the hypothesis that phosphatase activation is accomplished via a long-lived interaction between RsbT and RsbU. In contrast, RsbT kinase activity was found to be integral for the transmission of external stimuli to σB. Thus, one route by which environmental stress signals could enter the σB network is by modulation of the RsbT kinase activity, thereby controlling the magnitude of the partner switch between the RsbS–RsbT complex and the RsbT–RsbU complex.  相似文献   

20.
Bacillus subtilis responds to phosphate starvation stress by inducing the PhoP and SigB regulons. While the PhoP regulon provides a specific response to phosphate starvation stress, maximizing the acquisition of phosphate (P(i)) from the environment and reducing the cellular requirement for this essential nutrient, the SigB regulon provides nonspecific resistance to stress by protecting essential cellular components, such as DNA and membranes. We have characterized the phosphate starvation stress response of B. subtilis at a genome-wide level using DNA macroarrays. A combination of outlier and cluster analyses identified putative new members of the PhoP regulon, namely, yfkN (2',3' cyclic nucleotide 2'-phosphodiesterase), yurI (RNase), yjdB (unknown), and vpr (extracellular serine protease). YurI is thought to be responsible for the nonspecific degradation of RNA, while the activity of YfkN on various nucleotide phosphates suggests that it could act on substrates liberated by YurI, which produces 3' or 5' phosphoribonucleotides. The putative new PhoP regulon members are either known or predicted to be secreted and are likely to be important for the recovery of inorganic phosphate from a variety of organic sources of phosphate in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号