首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of feather wear in birds captured in spring have traditionally been analysed to describe the extent of winter moult in long‐distance migrants. However, the interpretation of feather wear may be rendered extremely difficult due to long moult periods, by the progress of the season, and by the existence of complex moult patterns. Here, stable isotope analysis is used to determine the origin of the wing feather generations present in Savi's warblers Locustella luscinioides captured in Portugal. Carbon, nitrogen and hydrogen isotope ratios of feathers of known European origin differed significantly from those known to have grown in Africa. A discriminant analysis, in which 91.1% of the cross validated samples were correctly classified, was used to determine the origin of tail and wing feathers collected from birds caught when they returned to the breeding quarters. The interpretation of feather‐wear generally agreed with the stable isotope analysis, but some inconsistencies were identified. The extent of winter moult in Savi's warblers is described and its moult strategy discussed.  相似文献   

2.
We describe the sequence and extent of the complex and little understood post-juvenile and post-breeding moults of Savi's Warblers Locustella luscinioides . In contrast to previous studies, the post-juvenile moult occurred in at least 44% of the birds, 5% of which moulted some or all tertials and greater coverts. The timing of overlap between the filling and the post-juvenile moults, and the fact that later-moulting birds had no post-juvenile moult, strongly suggests that the moult extent is dependent on fledging date. From July onwards, all adult males overlapped breeding and moult, whereas only 11% of the females did so. The start of moult varied from 6 June to 25 August, and was significantly earlier in males. Only 18% of the birds completed the moult, whereas the remaining individuals retained a variable number of inner primaries and/or secondaries. Interestingly, not only was the number of retained primaries positively associated with the date of moult, but so too was the primary number of birds in which the moult started. We view this as an adaptation allowing the replacement of the most important feathers for flight when the time available for moult is short. Body condition did not vary with the progress of moult when date was taken into account, but fat reserves still tended to decrease and then increase. The body condition was correlated positively with the wing raggedness, so Savi's Warblers do not compensate for an increasing wing load during moult.  相似文献   

3.
We present a comparison of feather stable isotope (δ13C, δ15N) patterns representing the habitat and diet conditions for two subspecies of willow warblers Phylloscopus trochilus that breed in parapatry, but winter in different regions of sub‐Saharan Africa. Previous analyses have shown that on average winter moulted innermost primaries (P1) show subspecific differences in δ15N values, although individuals show substantial variation for both δ13C and δ15N within the subspecies. We examined whether corresponding variation in the timing of the winter moult, as reflected by consistent intra‐wing correlations for individual's δ13C and δ15N values, could explain some of the previously observed isotopic variation. Further, differential subspecific adaptations to winter precipitation patterns across Africa might result in a variable degree of site fidelity or itinerancy during moult. We found no consistent trend in isotopic values from innermost to outermost primaries, thus inter‐individual variation in the timing of moult does not explain the subspecific isotopic variation for P1. Patterns in wing feather δ13C and δ15N values indicated that 41% of the individuals from both subspecies shifted their diet or habitats during winter moult. Importantly, despite well‐documented itinerancy in willow warblers during the winter, 59% of the individuals had feather isotope values consistent with stable use of habitats or diets during winter moult. Repeatability analyses suggest that individuals of both subspecies initiate moult in similar habitats from year‐to‐year while feeding on isotopically similar diets.  相似文献   

4.
Stable isotope analysis of feathers can be useful in the study of seasonal interactions and migratory connectivity in birds. For the Palaearctic–African migration system, however, the lack of isotope data from feathers of known origin in Africa renders the geographic assignment of birds captured on European breeding grounds to potential wintering areas problematic. Rectrices of the threatened aquatic warbler Acrocephalus paludicola grown in Africa were sampled across six European countries to assess whether birds in different breeding populations shared similar isotopic signatures and so were likely to have wintered in the same region in Africa. Freshly grown feathers of aquatic warblers collected at the only known wintering site in Senegal showed high variation in carbon, nitrogen, and hydrogen isotope ratios. Due to similarly high variation in isotope ratios of African‐grown feathers within all breeding populations, it was not possible to determine whether different populations wintered in different regions. However, isotope signatures of 20% of birds captured on European breeding grounds fell outside the range of those captured in Senegal, suggesting a wider wintering distribution than is currently known. We therefore assessed whether the origin of these feathers could be estimated by trying to establish isotopic gradients across sub‐Saharan West Africa. Feathers of three ecologically similar surrogate species were sampled from wetlands across a 3000 km east‐west and a 2000 km north–south transect. Within‐site variation in feather isotope ratios was frequently larger than the difference predicted by gradients across West Africa. Thus, predicting the origin of individual feathers using single‐isotope gradients was not reliable. The large within‐site variability of feather isotope ratios of a habitat specialist species like the aquatic warbler indicates that using feather isotope ratios will require large sample sizes from many locations, and may thus not be an efficient tool in identifying wintering areas of Palaearctic–African migrants.  相似文献   

5.
During partial moults birds replace a variable number or percentage of old feathers. This quantity, known as moult extent, has been a primary variable used in comparative studies. However, different spatial configurations of feather replacement may result from an equal number of renewed feathers. Few studies have addressed spatial aspects of moult, which may vary among species, among individuals of the same species and between episodes at the individual level. We present a novel approach to quantify the spatial configuration of a wing‐moult episode, hereafter referred to as moult topography, which comprises two elements, namely extent and vector, the latter condensing the spatial configuration of the replaced feathers on the wing plane. We apply this method to investigate preformative (post‐juvenile) wing‐feather moult pattern in the Spot‐breasted Wren Pheugopedius maculipectus and the White‐breasted Wood‐Wren Henicorhina leucosticta. We specified a null model of wing‐moult topography by which feather replacement follows a discrete anterior–posterior (vertical) axis between tracts and a discrete proximal–distal (horizontal) axis within tracts, and whereby wing feathers from a new tract are replaced only if all the feathers from the previous (anterior) tract have been replaced. Our sample of Spot‐breasted Wrens showed a strict single pattern of replacement that did not differ significantly from the null model. Our sample of White‐breasted Wood‐Wrens, however, differed significantly from the null model, showing prioritization of proximal wing feathers closer to the body. These differences might have biological relevance, for example in mate selection or in response to different environmental stressors, and might reveal the influence of these factors on the evolution of moult strategies. Overall, moult topography provides a new approach to future ecological and evolutionary studies of moult.  相似文献   

6.
Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence on feather structure and functionality. In this study, we used two complementary approaches to test whether moult duration and feather mass vary in relation to the timing of moult. Firstly, we conducted a comparative study between a sample of long‐distance migratory passerine species which differ in moult pattern. Secondly, we took advantage of the willow warbler's Phylloscopus trochilus biannual moult, for which it is well‐known that winter moult takes longer than summer moult, to assess between‐moult variation in feather mass. Our comparative analysis showed that summer moulting species performed significantly shorter moults than winter moulters. We also detected that feathers produced in winter were comparatively heavier than those produced in summer, both in between‐species comparison and between moults of the willow warbler. These results suggest the existence of a trade‐off between moult speed and feather mass mediated by timing of moult, which could contribute to explain the diversity of moult patterns in passerines.  相似文献   

7.
Phenotypic flexibility of organs in migratory birds has been documented for a variety of species of different genera during the migratory period. However, very little is known about phenotypic mass changes of organs with respect to other events within the annual cycle. This seems particularly interesting when birds face different physiological challenges in quick succession. We investigated mass changes of 13 organs from garden warblers (Sylvia borin) during the transition from moult to migration. These long-distance migratory birds perform a complete moult within their wintering area just shortly before the onset of spring migration. Birds were sampled in three successive stages according to their moult status: group I consisted of birds with growing primary or secondary wing feathers, group II consisted of birds with completed wing moult but with still moulting body feathers, and group III consisted of birds that had completed wing moult and body moult. Size-corrected flight muscle, kidney mass, and pancreas mass differed significantly among the three groups. Flight muscle was heaviest in birds that were about to leave their wintering area (group III) compared with birds still in body moult (group II). Kidney and pancreas showed a pattern similar to each other, with the heaviest mass occurring in birds with moulting wing feathers (group I) and significantly reduced mass in birds that had completed wing moult (group II) or both wing and body moult (group III). Mass reductions of kidney and pancreas during the transition from moult to migration are considered to be related to the demands of moult, while increased flight muscle may be due to moult, migration, or both. Phenotypic mass changes of organs in birds occur during their migration, but they also occur during the transition between other phases of the annual cycle such as moult and migration and are not restricted to the flight muscle.  相似文献   

8.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

9.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

10.
The moult of Barred Warblers Sylvia nisoria was studied during three winter seasons in southeastern Kenya at a southward passage site (Ngulia) and a wintering site (Mtito Andei). Most Barred Warblers migrating through Ngulia in November had yet to commence winter moult. These birds probably moulted subsequently in winter in northern Tanzania. In December, birds were found in heavy moult at Mtito Andei, and some of these birds were known to stay throughout the winter. By contrast, most birds reaching southeastern Kenya from late December onwards had already completed part or all of their winter moult, presumably at stopover sites in northern and eastern Kenya or in Ethiopia. Thus, winter moult in Barred Warblers takes place mainly in late November and December, either just before or soon after the final leg of autumn migration. In general, first-year birds renewed all tertials and tail feathers, about three to five secondaries per wing and commonly also the outer one to four large primaries per wing. Adults renewed all tertials and tail feathers, almost all secondaries and only occasionally an outer primary. The replacement of relatively fresh juvenile secondaries during the birds' first winter implies that the split moult pattern of this species (secondaries, tertials and tail moulted in winter; primaries and tertials in summer) is endogenously controlled.  相似文献   

11.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

12.
Flight feather moult in small passerines is realized in several ways. Some species moult once after breeding or once on their wintering grounds; others even moult twice. The adaptive significance of this diversity is still largely unknown. We compared the resistance to mechanical fatigue of flight feathers from the chiffchaff Phylloscopus collybita, a migratory species moulting once on its breeding grounds, with feathers from the willow warbler Phylloscopus trochilus, a migratory species moulting in both its breeding and wintering grounds. We found that flight feathers of willow warblers, which have a shaft with a comparatively large diameter, become fatigued much faster than feathers of chiffchaffs under an artificial cyclic bending regime. We propose that willow warblers may strengthen their flight feathers by increasing the diameter of the shaft, which may lead to a more rapid accumulation of damage in willow warblers than in chiffchaffs.  相似文献   

13.
Variation of wing pointedness index between groups of juveniles captured in different months (July, August, and September) and at different stages of juvenile moult was studied in three Acrocephalus warbler species captured on the Courish Spit on the Baltic Sea. Sedge warblers (Acrocephalus schoenobaenus) captured in July had less pointed wings than sedge warblers captured in August or September. Marsh warblers (A. palustris) showed no significant difference between birds in early and in late moult. No differences in wing pointedness were found between different cohorts of reed warblers (A. scirpaceus), including known locally hatched birds and late migrants captured in September. It is hypothesised that reed warbler populations in the northeastern Baltic are too evolutionarily young to have evolved a different wing shape as compared with the local Courish population.Communicated by F. Bairlein  相似文献   

14.
Adult birds replace their flight feathers (moult) at least once per year, either in summer after termination of breeding or (in the case of some long-distance migratory species) in the winter quarters. We reconstructed the evolutionary pathways leading to summer and winter moult using recently published molecular phylogenetic information on the relationships of the Western Palearctic warblers (Aves: Sylviidae). Our phylogenetic analysis indicates that summer moult is the ancestral pattern and that winter moult has evolved 7–10 times in this clade. As taxa increased their migratory distance and colonized northern breeding areas, summer moult disappeared and winter moult evolved. Our data also allows us to trace the historical origins of unusual moult patterns such as the split-moult and biannual moult strategies: the most parsimonous explanations for their origins is that they evolved from ancestral states of summer moult. We briefly discuss our results in the light of recent criticisms against phylogenetic comparative methods and the utility of historical versus functional definitions of adapation.  相似文献   

15.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

16.
Wing morphology is known to strongly affect flight performance by affecting lift and drag during flight. Performance may consequently deteriorate during feather moult due to the creation of feather gaps in the wing. Since wing gap size may directly affect the extent of reduced flight capacity, rapid moult involving the creation of large feather gaps is expected to substantially impair flight compared with the small gaps induced by a slower moult. To examine the factors affecting wing-feather moult speed, we studied adults of nineteen resident or very short-distance migrant passerine species during their post-breeding moult using a model-selection framework following a phylogenetically controlled analysis. We examined the speed of wing-feather moult in relation to each species’ flight distance index that was estimated based on local foraging movements rather than on longer flights (e.g., migration), assessed by the Delphi technique of expert evaluation. Moult speed was also examined with respect to six morphometric variables: body mass, wing loading, the feather comprising the tip of the wing, aspect ratio, wing span, and wing area. Our results suggest that flight distance index is the most important factor determining the speed of wing-feather moult in songbirds. Species that regularly fly a shorter distance were found to moult quickly, and those that take relatively longer flights moult slowly. These results suggest that the aerodynamic cost of wing area reduction due to feather moult shapes the evolution of annual routine processes by dictating a slower moult speed (resulting in small wing gaps) for species that regularly fly long distances and consequently may be affected more substantially by large wing gaps compared with short distance flyers.  相似文献   

17.
The primary moult of individually colour-ringed, adult yellow-nosed albatrosses at nests on Gough Island was examined in 1983 and related to the status of each bird and its breeding history in the previous year. Adults renew only about half of their primaries each winter and suspend moult while breeding. Birds that bred successfully renewed fewer primaries than did unsuccessful birds or nonbreeders. There were no differences in primary moult between the sexes or in relation to size. Yellow-nosed albatrosses show complex wave moult as an adaptation to slow renewal of flight feathers. The energy, nutrient or time requirements for feather renewal may conflict with breeding annually so that there is a trade-off between the extent of moult desirable to maintain flight efficiency and the benefits of breeding in successive seasons.  相似文献   

18.
For long‐distance migrants, such as many of the shorebirds, understanding the demographic implications of behavioural strategies adopted by individuals is key to understanding how environmental change will affect populations. Stable isotopes have been used in the terrestrial environment to infer migratory strategies of birds but rarely in marine or estuarine systems. Here, we show that the stable isotope ratios of carbon and nitrogen in flight feathers can be used to identify at least three discrete wintering areas of the Red Knot Calidris canutus on the eastern seaboard of the Americas, ranging from southeastern USA to Patagonia and Tierra del Fuego. In spring, birds migrate northwards via Delaware Bay, in the northeastern USA, the last stopping point before arrival in Arctic breeding areas, where they fatten up on eggs of spawning Horseshoe Crabs Limulus polyphemus. The isotope ratios of feather samples taken from birds caught in the Bay during May 2003 were compared with feathers obtained from known wintering areas in Florida (USA), Bahia Lomas (Chile) and Rio Grande (Argentina). In May 2003, 30% of birds passing through the Bay had Florida‐type ‘signatures’, 58% were Bahia Lomas‐type, 6% were Rio Grande‐type and 7% were unclassified. Some of the southern wintering birds had started moulting flight feathers in northern areas, suspended this, and then finished their moult in the wintering areas, whereas others flew straight to the wintering areas before commencing moult. This study shows that stable isotopes can be used to infer migratory strategies of coastal‐feeding shorebirds and provides the basis for identifying the moult strategy and wintering areas of birds passing through Delaware Bay. Coupled with banding and marking birds as individuals, stable isotopes provide a powerful tool for estimating population‐specific demographic parameters and, in this case, further our understanding of the migration systems of the declining Nearctic populations of Red Knot.  相似文献   

19.
The mechanisms by which melanin‐based colour polymorphism can evolve and be maintained in wild populations are poorly known. Theory predicts that colour morphs have differential sensitivity to environmental conditions. Recently it has been proposed that colour polymorphism covaries genetically with intrinsic and behavioural properties. Plumage moult is a costly and crucial somatic maintenance function in birds. We used a long‐term data set consisting of 761 observations on 307 individuals captured between 1985 and 2010 to examine differences in partial flight feather moult between grey (pale) and brown (pheomelanic dark) colour morphs of the tawny owl. We find that the brown morph consistently moult more primary flight feathers than the grey morph whereas there is no clear difference between colour morphs in the moulting of secondary feathers. Contrary to expectations, the difference in the number of moulted flight feathers between the morphs was independent of environmental conditions, as quantified by the abundance of prey. We discuss the potential physiological and behavioural causes for and costs of the observed difference in maintenance functions between colour morphs.  相似文献   

20.
Feather stable isotope composition may not reflect local isoscapes in which they were grown if supplemented with protein of endogenous origin. Thus, feather isotope analysis, combined with knowledge of local isoscapes can be used to infer endogenous nutrient composition to feathers in cases where birds travel to moult. We investigated this possibility in a study of flightless moulting greylag geese Anser anser on the Danish island of Saltholm, which are known to mobilise endogenous protein stores (acquired at previous terrestrial staging locations in Sweden) to reconstitute muscle blocks and organs whilst feeding on a saltmarsh (i.e. marine-influenced) diet with contrasting stable isotope ratios. We used stable isotope (δ13C, δ15N) measurements to test the prediction that new-grown flight feathers would have stable isotope values intermediate between those derived from a purely terrestrial C3 diet and one composed purely of saltmarsh plants. Feather δ13C and δ15N values were intermediate between those expected for feather material derived from local saltmarsh (i.e. exogenous) food items and Swedish terrestrial (endogenous muscle) sources, suggesting a mixing of endogenous and exogenous sources. These results confirm that moult migrant Anatidae exploit body stores to meet specific protein needs during the flightless period of remige regrowth and caution against the use of feather stable isotope ratios as direct indicators of the isotopic environment in which they were regrown, where endogenous contributions may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号