首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Staphylococcus aureus sortase transpeptidase SrtA isoform is responsible for the covalent attachment of virulence and colonization-associated proteins to the bacterial peptidoglycan. SrtA utilizes two substrates, undecaprenol-pyrophosphoryl-MurNAc(GlcNAc)-Ala-D-isoGlu-Lys(epsilon-Gly(5))-D-Ala-D-Ala (branched Lipid II) and secreted proteins containing a highly conserved C-terminal LPXTG sequence. SrtA simultaneously cleaves the Thr-Gly bond of the LPXTG-containing protein and forms a new amide bond with the nucleophilic amino group of the Gly(5) portion of branched Lipid II, anchoring the protein to this key intermediate that is subsequently polymerized into peptidoglycan. Here we describe the development of a general in vitro method for elucidating the substrate specificity of sortase enzymes. In addition, using immunofluorescence, cell adhesion assays, and transmission electron microscopy, we establish links between in vitro substrate specificity and in vivo function of the S. aureus sortase isoforms. Results from these studies provide strong supporting evidence of a primary role of the SrtA isoform in S. aureus adhesion and host colonization, illustrate a lack of specificity cross talk between SrtA and SrtB isoforms, and highlight the potential of SrtA as a target for the development of antivirulence chemotherapeutics against Gram-positive bacterial pathogens.  相似文献   

2.
During pathogenesis, Gram-positive bacteria utilize surface protein virulence factors such as the MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) to aid the initiation and propagation of infection through adherence to host endothelial tissue and immune system evasion. These virulence-associated proteins generally contain a C-terminal LPXTG motif that becomes covalently anchored to the peptidoglycan biosynthesis intermediate lipid II. In Staphylococcus aureus, deletion of the sortase isoform SrtA results in marked reduction in virulence and infection potential, making it an important antivirulence target. Here we describe the chemical synthesis and kinetic characterization of a nonhydrolyzable phosphinic peptidomimetic inhibitor of SrtA derived from the LPXTG substrate sequence.  相似文献   

3.
Gram-positive bacteria, in general, and staphylococci, in particular, are the widespread cause of nosocomial and community-acquired infections. The rapid evolvement of strains resistant to antibiotics currently in use is a serious challenge. Novel antimicrobial compounds have to be developed to fight these resistant bacteria, and sortase A, a bacterial cell wall enzyme, is a promising target for novel therapies. As a transpeptidase that covalently attaches various virulence factors to the cell surface, this enzyme plays a crucial role in the ability of bacteria to invade the host’s tissues and to escape the immune response. In this study we have screened a small molecule library against recombinant Staphylococcus aureus sortase A using an in vitro FRET-based assay. The selected hits were validated by NMR methods in order to exclude false positives and to analyze the reversibility of inhibition. Further structural and functional analysis of the best hit allowed the identification of a novel class of benzisothiazolinone-based compounds as potent and promising sortase inhibitors.  相似文献   

4.
The cell wall envelope of staphylococci and other Gram-positive pathogens is coated with surface proteins that interact with human host tissues. Surface proteins of Staphylococcus aureus are covalently linked to the cell wall envelope by a mechanism requiring C-terminal sorting signals with an LPXTG motif. Sortase (SrtA) cleaves surface proteins between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between threonine at the C-terminal end of polypeptides and cell wall cross-bridges. The active site architecture and catalytic mechanism of sortase A has hitherto not been revealed. Here we present the crystal structures of native SrtA, of an active site mutant of SrtA, and of the mutant SrtA complexed with its substrate LPETG peptide and describe the substrate binding pocket of the enzyme. Highly conserved proline (P) and threonine (T) residues of the LPXTG motif are held in position by hydrophobic contacts, whereas the glutamic acid residue (E) at the X position points out into the solvent. The scissile T-G peptide bond is positioned between the active site Cys(184) and Arg(197) residues and at a greater distance from the imidazolium side chain of His(120). All three residues, His(120), Cys(184), and Arg(197), are conserved in sortase enzymes from Gram-positive bacteria. Comparison of the active sites of S. aureus sortase A and sortase B provides insight into substrate specificity and suggests a universal sortase-catalyzed mechanism of bacterial surface protein anchoring in Gram-positive bacteria.  相似文献   

5.
Gram-positive pathogenic bacteria display proteins on their surface that play important roles during infection. In Staphylococcus aureus, these surface proteins are anchored to the cell wall by two sortase enzymes, SrtA and SrtB, that recognize specific surface protein sorting signals. The role of sortase enzymes in bacterial virulence was examined using a murine septic arthritis model. Intravenous inoculation with any of the Delta(srtA), Delta(srtB) or Delta(srtAB) mutants resulted in significantly increased survival and significantly lower weight loss compared with the parental strain. Mice inoculated with the Delta(srtA) mutant did not express severe arthritis, while arthritis in mice inoculated with the Delta(srtB) mutant was not different from that seen in mice that were infected with the wild-type parent strain. Furthermore, persistence of staphylococci in kidneys and joints following intravenous inoculation of mice was more pronounced for wild-type and Delta(srtB) mutant strains than for Delta(srtA) or Delta(srtAB) variants. Together these results indicate that sortase B (srtB) plays a contributing role during the pathogenesis of staphylococcal infections, whereas sortase A (srtA) is an essential virulence factor for the establishment of septic arthritis.  相似文献   

6.
Recently, sortase A (SrtA) from Staphyloccus aureus moved into the focus of bioscience because of its ability to incorporate site specific modifications into proteins. The enzyme was mostly used to modify target proteins in an analytical scale, to study biomolecules in their cellular context. In this study, we show the applicability of SrtA mediated ligation for site specific modification of proteins in a large scale. Therefore, the reaction was first optimized using peptides and subsequently new reaction conditions were applied for the large scale biotinylation of interleukin-8. Furthermore, we established C-terminal immobilization of the SrtA on a PEG based resin and could demonstrate maintaining enzymatic activity. Immobilized SrtA significantly facilitates previous ligation protocols as the enzyme can be easily recycled. Also, the removal of excess reaction solution and the whole washing process is significantly accelerated, as centrifugation or filtration techniques can be applied instead of time-consuming chromatography steps.  相似文献   

7.
Huang X  Aulabaugh A  Ding W  Kapoor B  Alksne L  Tabei K  Ellestad G 《Biochemistry》2003,42(38):11307-11315
Staphylococcus aureus sortase (SrtA) is a thiol transpeptidase. The enzyme catalyzes a cell wall sorting reaction in which a surface protein with a sorting signal containing a LPXTG motif is cleaved between the threonine and glycine residues. The resulting threonine carboxyl end of this protein is covalently attached to a pentaglycine cross-bridge of peptidoglycan. The transpeptidase activity of sortase has been demonstrated in in vitro reactions between a LPETG-containing peptide and triglycine. When a nucleophile is not available, sortase slowly hydrolyzes the LPETG peptide at the same site. In this study, we have analyzed the steady-state kinetics of these two types of reactions catalyzed by sortase. The kinetic results fully support a ping-pong mechanism in which a common acyl-enzyme intermediate is formed in transpeptidation and hydrolysis. However, each reaction has a distinct rate-limiting step: the formation of the acyl-enzyme in transpeptidation and the hydrolysis of the same acyl-enzyme in the hydrolysis reaction. We have also demonstrated in this study that the nucleophile binding site of S. aureus sortase SrtA is specific for diglycine. While S1' and S2' sites of the enzyme both prefer a glycine residue, the S1' site is exclusively selective for glycine. Lengthening of the polyglycine acceptor nucleophile beyond diglycine does not further enhance the binding and catalysis.  相似文献   

8.
The SrtA isoform of the Staphylococcus aureus sortase transpeptidase is responsible for the covalent attachment of virulence- and colonization-associated proteins to the bacterial peptidoglycan. Sortase utilizes two substrates, undecaprenol-pyrophosphoryl-MurNAc(GlcNAc)-Ala-d-isoGlu-Lys(-Gly5)-d-Ala-d-Ala (branched Lipid II) and secreted proteins containing a highly conserved LPXTG sequence near their C termini. SrtA simultaneously cleaves the Thr-Gly bond of the LPXTG-containing protein and forms a new amide bond with the nucleophilic amino group of the Gly5 portion of branched Lipid II, anchoring the protein to this key intermediate that is subsequently polymerized into peptidoglycan. Here we show that reported fluorescence quenching activity assays for SrtA are subject to marked fluorescence inner filter effect quenching, resulting in prematurely hyperbolic velocity versus substrate profiles and underestimates of the true kinetic parameters kcat and Km. We therefore devised a discontinuous high-performance liquid chromatography (HPLC)-based assay to monitor the SrtA reaction employing the same substrates used in the fluorescence quenching assay: Gly5 and Abz-LPETG-Dap(Dnp)-NH2. Fluorescence or UV detection using these substrates facilitates separate analysis of both the acylation and the transpeptidation steps of the reaction. Because HPLC was performed using fast-flow analytical columns (<8min/run), high-throughput applications of this assay for analysis of SrtA substrate specificity, kinetic mechanism, and inhibition are now feasible. Kinetic analysis using the HPLC assay revealed that the kinetic parameters for SrtA with Abz-LPETG-Dap(Dnp)-NH2 are 5.5mM for Km and 0.27s-1 for kcat. The Km for Gly5 was determined to be 140microM. These values represent a 300-fold increase in Km for the LPXTG substrate and a 12,000-fold increase in kcat over literature-reported values, suggesting that SrtA is more a robust enzyme than previous analyses indicated.  相似文献   

9.
The Staphylococcus aureus transpeptidase SrtA catalyzes the covalent attachment of LPXTG-containing virulence and colonization-associated proteins to cell-wall peptidoglycan in Gram-positive bacteria. Recent structural characterizations of staphylococcal SrtA, and related transpeptidases SrtB from S. aureus and Bacillus anthracis, provide many details regarding the active site environment, yet raise questions with regard to the nature of catalysis and active site cysteine thiol activation. Here we re-evaluate the kinetic mechanism of SrtA and shed light on aspects of its catalytic mechanism. Using steady-state, pre-steady-state, bisubstrate kinetic studies, and high-resolution electrospray mass spectrometry, revised steady-state kinetic parameters and a ping-pong hydrolytic shunt kinetic mechanism were determined for recombinant SrtA. The pH dependencies of kinetic parameters k(cat)/K(m) and k(cat) for the substrate Abz-LPETG-Dap(Dnp)-NH(2) were bell-shaped with pK(a) values of 6.3 +/- 0.2 and 9.4 +/- 0.2 for k(cat) and 6.2 +/- 0.2 and 9.4 +/- 0.2 for k(cat)/K(m). Solvent isotope effect (SIE) measurements revealed inverse behavior, with a (D)2(O)k(cat) of 0.89 +/- 0.01 and a (D)2(O)(k(cat)/K(m)) of 0.57 +/- 0.03 reflecting an equilibrium SIE. In addition, SIE measurements strongly implicated Cys184 participation in the isotope-sensitive rate-determining chemical step when considered in conjunction with an inverse linear proton inventory for k(cat). Last, the pH dependence of SrtA inactivation by iodoacetamide revealed a single ionization for inactivation. These studies collectively provide compelling evidence for a reverse protonation mechanism where a small fraction (ca. 0.06%) of SrtA is competent for catalysis at physiological pH, yet is highly active with an estimated k(cat)/K(m) of >10(5) M(-)(1) s(-)(1).  相似文献   

10.
Many surface proteins of Gram-positive bacteria, which play important roles during the pathogenesis of human infections, are anchored to the cell wall envelope by a mechanism requiring sortases. Sortase B, a cysteine transpeptidase from Staphylococcus aureus, cleaves the C-terminal sorting signal of IsdC at the NPQTN motif and tethers the polypeptide to the pentaglycine cell wall cross-bridge. During catalysis, the active site cysteine of sortase and the cleaved substrate form an acyl intermediate, which is then resolved by the amino group of pentaglycine cross-bridges. We report here the crystal structures of SrtBDeltaN30 in complex with two active site inhibitors, MTSET and E64, and with the cell wall substrate analog tripleglycine. These structures reveal, for the first time, the active site disposition and the unique Cys-Arg catalytic machinery of the cysteine transpeptidase, and they also provide useful information for the future design of anti-infective agents against sortases.  相似文献   

11.
Lu C  Zhu J  Wang Y  Umeda A  Cowmeadow RB  Lai E  Moreno GN  Person MD  Zhang Z 《Biochemistry》2007,46(32):9346-9354
We report the first direct observation of the self-association behavior of the Staphylococcus aureus sortase A (SrtA) transpeptidase. Formation of a SrtA dimer was observed under native conditions by polyacrylamide gel electrophoresis and fast protein liquid chromatography (FPLC). Subsequent peptide mass fingerprinting and protein sequencing experiments confirmed the dimeric form of the SrtA protein. Furthermore, SrtA can be selectively cross-linked both in vitro and in Escherichia coli. Multiple samples of enzyme were subjected to analytical sedimentation equilibrium ultracentrifugation to obtain an apparent Kd for dimer formation of about 55 microM. Finally, enzyme kinetic studies suggested that the dimeric form of SrtA is more active than the monomeric enzyme. Discovery of SrtA dimerization may have significant implications for understanding microbial physiology and developing new antibiotics.  相似文献   

12.
Phosphosignaling through pSer/pThr/pTyr is emerging as a common signaling mechanism in prokaryotes. The human pathogen Staphylococcus aureus produces two low-molecular-weight protein tyrosine phosphatases (PTPs), PtpA and PtpB, with unknown functions. To provide the structural context for understanding PtpA function and substrate recognition, establish PtpA's structural relations within the PTP family, and provide a framework for the design of specific inhibitors, we solved the crystal structure of PtpA at 1 Å resolution. While PtpA adopts the common, conserved PTP fold and shows close overall similarity to eukaryotic PTPs, several features in the active site and surface organization are unique and can be explored to design selective inhibitors. A peptide bound in the active site mimics a phosphotyrosine substrate, affords insight into substrate recognition, and provides a testable substrate prediction. Genetic deletion of ptpA or ptpB does not affect in vitro growth or cell wall integrity, raising the possibility that PtpA and PtpB have specialized functions during infection.  相似文献   

13.
The immobilization of proteins to surfaces is an active area of research due to strong interest in protein-based sensors. Here, we describe a novel method for immobilizing ligand proteins onto Biacore sensor chips using the transpeptidase activity of Staphylococcus aureus sortase A (SrtA). This method provides a robust and gentle approach for the site-directed, covalent coupling of proteins to biosensor chips. Notably, the high specificity of the sortase allows immobilization of proteins from less than pure protein samples allowing short cuts in protein purification protocols.  相似文献   

14.
Surface proteins of Staphylococcus aureus are anchored to the cell wall envelope by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Sortase A cleaves surface proteins between the threonine (T) and the glycine (G) residues of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine at the C-terminal end of polypeptides and the amino group of pentaglycine cross-bridges of cell wall peptidoglycan. Previous work showed that Cys(184) and His(120) of sortase A are absolutely essential for catalysis; however an active site thiolateimidazolium ion pair may not be formed. The three-dimensional crystal structure of sortase A revealed that Arg(197) is located in close proximity to both the active site Cys(184) and the scissile peptide bond between threonine and glycine. We show here that substitution of Arg(197) with alanine, lysine, or histidine severely reduced sortase A function both in vivo and in vitro, whereas Asn(98), which had earlier been implicated in hydrogen bonding to His(120), was found to be dispensable for catalysis. As the structural proximity of Arg(197) and Cys(184) is conserved in sortase enzymes and as ionization of the Cys(184) sulfhydryl group seems required for sortase activity, we propose that Arg(197) may function as a base, facilitating thiolate formation during sortase-mediated cleavage and transpeptidation reactions.  相似文献   

15.
Staphylococcus aureus H membranes were found to contain four major binding components: Mr = 115,000; Mr = 100,000 doublet; and Mr = 46,000. The low molecular weight protein bound penicillin reversibly and was purified by prebinding membranes with penicillin prior to affinity chromatography. The purified protein catalyzed transpeptidase and carboxypeptidase reactions using di[14C]acetyl-L-lysyl-D-alanyl-D-alanine as the substrate and glycine and hydroxylamine as the acceptors. In addition, the enzyme catalyzed a penicillinase reaction. Kinetic analysis of these reactions revealed similar Vmax values suggesting that, if there is a single active site, the rate-determining steps (i.e. deacetylation) are similar. Rapid denaturation of the enzyme.substrate complex resulted in the detection of covalent penicilloyl- and diacetyl-L-lysyl-D-alanyl.enzyme complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

16.
The catalytic activity of Staphylococcus aureus sortase A (SaSrtA) is dependent on Ca2+, because binding of Ca2+ to Glu residues distal to the active site stabilizes the substrate binding site. To obtain Ca2+‐independent SaSrtA, we substituted two Glu residues in the Ca2+‐binding pocket (Glu105 and Glu108). Although single mutations decreased SaSrtA activity, mutations of both Glu105 and Glu108 resulted in Ca2+‐independent activity. Kinetic analysis suggested that the double mutations affect the substrate binding site, without affecting substrate specificity. This approach will allow us to develop SaSrtA variants suitable for various applications, including in vivo site‐specific protein modification and labeling. Biotechnol. Bioeng. 2012; 109: 2955–2961. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
In Staphylococcus aureus, virulence and colonization-associated surface proteins are covalently anchored to the cell wall by the transpeptidase Sortase A (SrtA). In order to better understand the contribution of specific active site residues to substrate recognition and catalysis, we performed mutational analysis of several key residues in the SrtA active site. Analysis of protein stability, kinetic parameters, solvent isotope effects, and pH-rate profiles for key SrtA variants are consistent with a reverse protonated Cys184-His120 catalytic dyad, and implicate a role for Arg197 in formation of an oxyanion hole to stabilize the transition state. In contrast, mutation of Asp185 and Asp186 produced negligible effects on catalysis, and no evidence was found to support the existence of a functional catalytic triad. Mutation of Thr180, Leu181, and Ile182 to alanine produced modest decreases in SrtA activity and led to substrate inhibition. Thermodynamic stability measurements by SUPREX (stability of unpurified proteins from rates of H/D exchange) revealed decreases in conformational stability that correlate with the observed substrate inhibition for each variant, signifying a potential role for the conserved 180TLITC184 motif in defining the active-site architecture of SrtA. In contrast, mutation of Thr183 to alanine led to a significant 1200-fold decrease in kcat, which appears to be unrelated to conformational stability. Potential explanations for these results are discussed, and a revised model for SrtA catalysis is presented.  相似文献   

18.
19.
Surface proteins attached by sortases to the cell wall envelope of bacterial pathogens play important roles during infection. Sorting and attachment of these proteins is directed by C-terminal signals. Sortase B of S. aureus recognizes a motif NPQTN, cleaves the polypeptide after the Thr residue, and attaches the protein to pentaglycine cross-bridges. Sortase B of B. anthracis is thought to recognize the NPKTG motif, and attaches surface proteins to m-diaminopimelic acid cross-bridges. We have determined crystal structure of sortase B from B. anthracis and S. aureus at 1.6 and 2.0 A resolutions, respectively. These structures show a beta-barrel fold with alpha-helical elements on its outside, a structure thus far exclusive to the sortase family. A putative active site located on the edge of the beta-barrel is comprised of a Cys-His-Asp catalytic triad and presumably faces the bacterial cell surface. A putative binding site for the sorting signal is located nearby.  相似文献   

20.
Atomic resolution studies of protein kinases have traditionally been carried out in the inhibitory state, limiting our current knowledge on the mechanisms of substrate recognition and catalysis. Using NMR, X-ray crystallography and thermodynamic measurements, we analyzed the substrate recognition process of cAMP-dependent protein kinase (PKA), finding that entropy and protein dynamics play a prominent role. The nucleotide acts as a dynamic and allosteric activator by coupling the two lobes of apo PKA, enhancing the enzyme dynamics synchronously and priming it for catalysis. The formation of the ternary complex is entropically driven, and NMR spin relaxation data reveal that both substrate and PKA are dynamic in the closed state. Our results show that the enzyme toggles between open and closed states, which indicates that a conformational selection rather than an induced-fit mechanism governs substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号