首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of xanthan formation in Xanthomonas campestris continuous and fed-batch fermentations was studied along with metabolic changes due to growth rate variation. A maximum growth rate within the range 0.11–0.12 h–1 was obtained from the continuous culture data in defined medium, producing xanthan at rates up to 0.36 g l–1 h–1 corresponding to a maximum 67% glucose conversion at a dilution rate (D) of 0.05 h–1. Comparatively, fed-batch cultivation was more efficient, producing maximum xanthan at 0.75 g l–1 h–1 and 63% glucose conversion at 0.1 h–1. When reaching D=0.062 h–1 in continuous cultures, a change was observed and the values of the specific rate of substrate consumption shifted, initiating an uncoupled growth region expressing a lack of balance of the catabolic and anabolic reactions. The deviation was not accompanied by a change in specific xanthan production indicating that xanthan metabolism was not affected by D. For fed-batch-grown X. campestris cells within the range D=0.03–0.1 h–1, both metabolic parameters changed linearly with the growth rate showing a wide region coupled to growth. Outside that range, glucose accumulated and the specific xanthan production dropped, suggesting substrate inhibition. Correspondence to: J. C. Roseiro  相似文献   

2.
In this study, the glucose 6-phosphate dehydrogenase gene (XOO2314) was inactivated in order to modulate the intracellular glucose 6-phosphate, and its effects on xanthan production in a wild-type strain of Xanthomonas oryzae were evaluated. The intracellular glucose 6-phosphate was increased from 17.6 to 99.4 μmol g−1 (dry cell weight) in the gene-disrupted mutant strain. The concomitant increase in the glucose 6-phosphate was accompanied by an increase in xanthan production of up to 2.23 g l−1 (culture medium). However, in defined medium supplemented with 0.4% glucose, the growth rate of the mutant strain was reduced to 52.9% of the wild-type level. Subsequently, when a family B ATP-dependent phosphofructokinase from Escherichia coli was overexpressed in the mutant strain, the growth rate was increased to 142.9%, whereas the yields of xanthan per mole of glucose remained approximately the same.  相似文献   

3.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

4.
Single-stage continuous fermentations to produce xanthan gum have been run at dilution rates (D) from 0.023 to 0.196 hr?1. Xanthan production rate (XPR) was a function of D. XPR increased from 0.34 g/hr/kg at D = 0.023 hr?1 to the maximum 0.84 g/hr/kg at D = ca. 0.15 hr?1. At D > 0.15 hr?1 XPR decreased and at the highest D studied (0.196 hr?1) was 0.69 g/hr/kg. Yield of xanthan from glucose consumed was 81–89%. Steady states ended between 6.5 and 8.7 turnovers when a variant strain occurred.  相似文献   

5.
Two genes involved in central carbon metabolism were inactivated to modulate intracellular glucose 6-phosphate and to evaluate its effects on xanthan production in wild-type Xanthomonas oryzae pv. oryzae. Upon the inactivation of the phosphogluconate dehydratase gene (edd), intracellular glucose 6-phosphate increased from 0.05 to 1.17 mmol/g (dry cell wt). This was accompanied by increased xanthan production of up to 2.55 g/l (culture medium). In contrast, inactivation of 6-phosphogluconate dehydrogenase gene (gndA) did not influence intracellular glucose 6-phosphate nor xanthan production. The intracellular availability of glucose 6-phosphate is proposed as a rate-limiting factor in xanthan production, and it may be possible to increases production of xanthan by modulating the activities of enzymes in central carbon metabolism.  相似文献   

6.
Gluconobacter oxydans was grown successively in glucose and nitrogen-limited chemostat cultures. Construction of mass balances of organisms growing at increasing dilution rates in glucose-limited cultures, at pH 5.5, revealed a major shift from extensive glucose metabolism via the pentose phosphate pathway to the direct pathway of glucose oxidation yielding gluconic acid. Thus, whereas carbon dioxide production from glucose accounted for 49.4% of the carbon input at a dilution rate (D)=0.05 h-1, it accounted for only 1.3% at D=0.26 h-1. This decline in pentose phosphate pathway activity resulted in decreasing molar growth yields on glucose. At dilution rates of 0.05 h-1 and 0.26 h-1 molar growth yields of 19.5 g/mol and 3.2 g/mol, respectively, were obtained. Increase of the steady state glucose concentration in nitrogen-limited chemostat cultures maintained at a constant dilution rate also resulted in a decreased flow of carbon through the pentose phosphate pathway. Above a threshold value of 15–20 mM glucose in the culture, pentose phosphate pathway activity almost completely inhibited. In G. oxydans the coupling between energy generation and growth was very inefficient; yield values obtained at various dilution rates varied between 0.8–3.4 g/cells synthesized per 0.5 mol of oxygen consumed.  相似文献   

7.
Escherichia coli B/r was grown in chemostat cultures under various limitations with glucose as carbon source. Since E. coli only synthesized the glucose dehydrogenase (GDH) apo-enzyme and not the appropriate cofactor, pyrroloquinoline quinone (PQQ), no gluconate production could be observed. However, when cell-saturating amounts of PQQ (nmol to mol range) were pulsed into steady state glucose-excess cultures of E. coli, the organisms responded with an instantaneous formation of gluconate and an increased oxygen consumption rate. This showed that reconstitution of GDH in situ was possible.Hence, in order to examine the influence on glucose metabolism of an active GDH, E. coli was grown aerobically in chemostat cultures under various limitations in the presence of PQQ. It was found that the presence of PQQ indeed had a sizable effect: at pH 5.5 under phosphate- or sulphate- limited conditions more than 60% of the glucose consumed was converted to gluconate, which resulted in steady state gluconate concentrations up to 80 mmol/l. The specific rate of gluconate production (0.3–7.6 mmol·h-1·(g dry wt cells)-1) was dependent on the growth rate and the nature of the limitation. The production rate of other overflow metabolites such as acetate, pyruvate, and 2-oxoglutarate, was only slightly altered in the presence of PQQ. The fact that the cells were now able to use an active GDH apparently did not affect apo-enzyme synthesis.Abbreviations HEPES N-2-hydroxy-ethylpiperazine-N-2-ethane sulphonic acid - MES 2-morpholinoethane sulphonic acid - PQQ pyrroloquinoline quinone (systematic name: 2,7,9-tricarboxy-1H-pyrrolo-(2,3-f)-quinoline-4,5-dione) - WB Wurster's Blue (systematic name: 1,4-bis-(dimethylamino)-benzene perchlorate  相似文献   

8.
Summary Growth of Saccharomyces cerevisiae was investigated under aerobic conditions in a glucose limited chemostat. The steady state concentrations of cells, glucose and ethanol were measured in dependence of the dilution rate. The growth rate showed a biphasic dependence from the glucose concentration. A shift from respiratory to fermentative metabolism (Crabtree-effect) altering heavily the cell yield and the ethanol yield took place in the range of dilution rates between 0.3 h-1 and 0.5 h-1. Therefore the classical theory of continuous cultures is not applicable on aerobic growth of Saccharomyces cerevisiae under glucose limitation without introducing further premises. On the other hand the steady state cell concentration as a function of the dilution rate fits well the theoretically calculated curves, if cells are cultivated under conditions where only fermentation or respiration is possible.  相似文献   

9.
Summary The induction of yeast cell aggregates in a column reactor was initiated by packing yeast cell paste of Saccharomyces uvarum into the column, and then YMP broth was fed into the column from the bottom at a linear flow rate of 2.5 cm/h. Thereafter, yeast cells aggregated in the column within 48 h without a supply of oxygen. When this yeast aggregate column reactor was used for continuous ethanol production, a final ethanol concentration of 10.8% (w/v) was obtained from 23% (w/v) of glucose in a YMP broth with a dilution rate of 0.05 h-1, and 4.9% (w/v) was obtained from 10% (w/v) of glucose with a dilution rate of 0.6 h-1. The theoretical yield was above 97% in both cases. The ethanol production rates were 13 g1 h-1 l-1 and 90 g1 h-1 l-1 for producing 10.8% (w/v) and 4.9% (w/v) of ethanol respectively. This column reactor was maintained at a steady state for more than one month.  相似文献   

10.
Summary A fibrous support was used forZ. mobilis immobilization. The system showed a broad optimum temperature range (25–35°C) for highest ethanol productivity, ethanol yield and glucose conversion during continuous fermentation of a 100 g/L glucose medium. Ethanol production and glucose conversion kept steady during two months of continuous operation at D=1h–1.  相似文献   

11.
Rhodobacter capsulatus strain 37b4 was grown diazotrophically in phototrophic chemostat culture with 30 mM of d,l-malate and 2 mM of ammonium. Illumination was varied at constant dilution rate (D) and vice versa, respectively. When D was raised from 0.035 to 0.165 h-1 at 30 klx, the steady state cell protein level as well as malate consumption decreased. d-malate was utilized only at D=0.035 h-1. Specific cellular activities of nitrogenase, as determined by acetylene reduction as well as by dinitrogen (N2) fixation, increased and approached constancy at D>0.075 h-1. Specific ATP contents of cells increased with increasing D, while specific ADP and AMP contents exhibited no significant variations. Consequently, energy charge values as well as molar ratios of ATP/ADP (T/D) increased. Raising illumination from 6 to 30 klx at D=0.075 h-1 resulted in an increase of the steady state protein level as well as of l-malate consumption. d-malate was not utilized under these conditions. Specific nitrogenase activity of cells increased at the lower and levelled off at the higher illuminations. Specific ATP contents of cells stayed constant but specific ADP contents increased with increasing illumination. The energy charge did not vary significantly, while the T/C ratio decreased between 6 and 18 klx and stayed constant at the higher illuminations. The results do not reveal any relationship between nitrogenase activity and the cellular levels or relative proportions of different adenine nucleotides. However, when steady state amounts of fixed N2 were plotted versus steady state T/D ratios, an inverse proportion became apparent, irrespective of the growth conditions employed. On the other hand, specific nitrogenase activity increased linearly when the rate of malate consumption increased. The results suggest that under steady state conditions the T/D ratio reflects the amount of ATP required to keep the amount of fixed N2 at a given level, while the rate at which nitrogenase functions depends on the rate at which the carbon and electron source, malate, is utilized by the organisms.  相似文献   

12.
Compared with steady state, oscillation in continuous very-high-gravity ethanol fermentation with Saccharomyces cerevisiae improved process productivity, which was thus introduced for the fermentation system composed of a tank fermentor followed by four-stage packed tubular bioreactors. When the very-high-gravity medium containing 280 g l−1 glucose was fed at the dilution rate of 0.04 h−1, the average ethanol of 15.8% (v/v) and residual glucose of 1.5 g l−1 were achieved under the oscillatory state, with an average ethanol productivity of 2.14 g h−1 l−1. By contrast, only 14.8% (v/v) ethanol was achieved under the steady state at the same dilution rate, and the residual glucose was as high as 17.1 g l−1, with an ethanol productivity of 2.00 g h−1 l−1, indicating a 7% improvement under the oscillatory state. When the fermentation system was operated under the steady state at the dilution rate of 0.027 h−1 to extend the average fermentation time to 88 h from 59 h, the ethanol concentration increased slightly to 15.4% (v/v) and residual glucose decreased to 7.3 g l−1, correspondingly, but the ethanol productivity was decreased drastically to 1.43 g h−1 l−1, indicating a 48% improvement under the oscillatory state at the dilution rate of 0.04 h−1.  相似文献   

13.
During glucose‐limited growth, a substantial input of adenosine triphosphate (ATP) is required for the production of β‐lactams by the filamentous fungus Penicillium chrysogenum. Formate dehydrogenase has been confirmed in P. chrysogenum for formate oxidation allowing an extra supply of ATP, and coassimilation of glucose and formate has the potential to increase penicillin production and biomass yield. In this study, the steady‐state metabolite levels and fluxes in response to cofeeding of formate as an auxiliary substrate in glucose‐limited chemostat cultures at the dilution rates (D) of both 0.03 h?1 and 0.05 h?1 are determined to evaluate the quantitative impact on the physiology of a high‐yielding P. chrysogenum strain. It is observed that an equimolar addition of formate is conducive to an increase in both biomass yield and penicillin production at D = 0.03 h?1, while this is not the case at D = 0.05 h?1. In addition, a higher cytosolic redox status (NADH/NAD+), a higher intracellular glucose level, and lower penicillin productivity are only observed upon formate addition at D = 0.05 h?1, which are virtually absent at D = 0.03 h?1. In conclusion, the results demonstrate that the effect of formate as an auxiliary substrate on penicillin productivity in the glucose‐limited chemostat cultivations of P. chrysogenum is not only dependent on the formate/glucose ratio as published before but also on the specific growth rate. The results also imply that the overall process productivity and quality regarding the use of formate should be further explored in an actual industrial‐scale scenario.  相似文献   

14.
Olive mill wastewaters (OMW) are a by-product from olive oil manufacture that cause environmental pollution. These wastes have been used as substrate for the production of the extracellular polysaccharide xanthan by Xanthomonas campestris NRRL B1459-S4L41. Growth and xanthan production on dilute OMW as a sole source of nutrients were obtained at OMW concentrations below 60%, yielding a maximal xanthan production of 4.4gl−1 at 30–40% OMW concentration. Addition of nitrogen and/or salts led to significantly increased xanthan yields with a maximum of 7.7gl−1. The N/salts supplements also allowed an increase in the optimal OMW concentration. Inocula pre-grown on OMW can be used. Results suggest that an improved xanthan yield could be obtained with adequate balance between waste concentration and nitrogen or salt supplementation. OMW is proposed as a low-cost substrate for xanthan production with the additional environmental benefit of this use.  相似文献   

15.
Batch growth characteristics of various organisms were determined on a number of pairs of sugars to find a stable system showing clear-cut classical diauxie. The system selected for further study was a strain of Klebsiella (Acrobacter) aerogenes, NCIB 8021 growing on a mixture of glucose and maltose in minimal salts medium at 30°C. This showed a specific growth rate (μ) of 1.19 ± 0.03 hr.?1 on 0.01% (w/v) glucose, followed by a diauxie lag of 0.73 ± 0.04 hr and then further growth on 0.01% (w/v) maltose at μ = 0.60 ± 0.03 hr?1. This system was applied to a two-stage continuous, stirred, aerated fermentor system, with working volumes of 1.85 and 2.77 liters, respectively, and growth was followed (mainly by optical density, referred to dry weights and viable counts) and also the concentrations of the sugars were measured. Except at the very highest flow rates, glucose was immediately and virtually completely consumed, but the utilization of maltose showed interesting variations: (a) At low feed rates between 0.09 and 0.4 vol./hr. exactly the same response was found with mixed sugars as with double concentration glucose, showing that the organism was able to metabolize maltose as well and as quickly as glucose. (b) At medium feed rates of 0.46 to 1.03 vol./hr. two deviations were observed, both of which increased as the dilution rate increased: the system showed a time lag on maltose before the cell population began to rise and the volume of medium used before the steady state was established was greater than predicted, (c) At fast feed rates, approaching “washout” condition of 1.055 to 1.135 vol./hr. the first culture vessel showed no reaction to a step change which included maltose, although, of course, with doubled glucose it responded immediately. The second vessel, however, quickly metabolized the overflow maltose, and showed a steady increase of cell population to the theoretical steady state. These results may have significance for industrial systems using complex commercial substrates.  相似文献   

16.
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day?1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day?1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day?1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day?1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Xanthomonas citri ssp. citri (Xcc) causes canker disease in citrus, and biofilm formation is critical for the disease cycle. OprB (Outer membrane protein B) has been shown previously to be more abundant in Xcc biofilms compared with the planktonic state. In this work, we showed that the loss of OprB in an oprB mutant abolishes bacterial biofilm formation and adherence to the host, and also compromises virulence and efficient epiphytic survival of the bacteria. Moreover, the oprB mutant is impaired in bacterial stress resistance. OprB belongs to a family of carbohydrate transport proteins, and the uptake of glucose is decreased in the mutant strain, indicating that OprB transports glucose. Loss of OprB leads to increased production of xanthan exopolysaccharide, and the carbohydrate intermediates of xanthan biosynthesis are also elevated in the mutant. The xanthan produced by the mutant has a higher viscosity and, unlike wild‐type xanthan, completely lacks pyruvylation. Overall, these results suggest that Xcc reprogrammes its carbon metabolism when it senses a shortage of glucose input. The participation of OprB in the process of biofilm formation and virulence, as well as in metabolic changes to redirect the carbon flux, is discussed. Our results demonstrate the importance of environmental nutrient supply and glucose uptake via OprB for Xcc virulence.  相似文献   

18.
Acetate formation is a disadvantage in the use of Escherichia coli for recombinant protein production, and many studies have focused on optimizing fermentation processes or altering metabolism to eliminate acetate accumulation. In this study, E. coli MEC697 (MG1655 nadR nudC mazG) maintained a larger pool of NAD(H) compared to the wild‐type control, and also accumulated lower concentrations of acetate when grown in batch culture on glucose. In steady‐state cultures, the elevated total NAD(H) found in MEC697 delayed the threshold dilution rate for acetate formation to a growth rate of 0.27 h?1. Batch and fed‐batch processes using MEC697 were examined for the production of β‐galactosidase as a model recombinant protein. Fed‐batch culture of MEC697/pTrc99A‐lacZ compared to MG1655/pTrc99A‐lacZ at a growth rate of 0.22 h?1 showed only a modest increase of protein formation. However, 1 L batch growth of MEC697/pTrc99A‐lacZ resulted in 50% lower acetate formation compared to MG1655/pTrc99A‐lacZ and a two‐fold increase in recombinant protein production.  相似文献   

19.
As is often the case for microbial product formation, the penicillin production rate of Penicillium chrysogenum has been observed to be a function of the growth rate of the organism. The relation between the biomass specific rate of penicillin formation (qp) and growth rate (µ) has been measured under steady state conditions in carbon limited chemostats resulting in a steady state qp(µ) relation. Direct application of such a relation to predict the rate of product formation during dynamic conditions, as they occur, for example, in fed‐batch experiments, leads to errors in the prediction, because qp is not an instantaneous function of the growth rate but rather lags behind because of adaptational and regulatory processes. In this paper a dynamic gene regulation model is presented, in which the specific rate of penicillin production is assumed to be a linear function of the amount of a rate‐limiting enzyme in the penicillin production pathway. Enzyme activity assays were performed and strongly indicated that isopenicillin‐N synthase (IPNS) was the main rate‐limiting enzyme for penicillin‐G biosynthesis in our strain. The developed gene regulation model predicts the expression of this rate limiting enzyme based on glucose repression, fast decay of the mRNA encoding for the enzyme as well as the decay of the enzyme itself. The gene regulation model was combined with a stoichiometric model and appeared to accurately describe the biomass and penicillin concentrations for both chemostat steady‐state as well as the dynamics during chemostat start‐up and fed‐batch cultivation. Biotechnol. Bioeng. 2010;106: 608–618. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
When the ‘dihydroxyacetone-fermentation’ was carried out in a steady state by the cells of Br. fuscum, it was suggested that the consumption rate of glucose in the medium might be regulated at the initial stages of glucose degradation such as; (a) glucose isomerization, (b) glucose dehydrogenation, and (c) glucose phosphorylation. Of these three enzymatic reactions, the isomerization and the dehydrogenation were proved to be unable to occur or negligible in vivo. So, in consideration of the pool sizes of Mg+ +, Pi, H+, glucose, G6P*, ATP, ADP, etc., the intracellular glucokinase** activity was calculated. Results indicate that glucokinase reaction may be the limiting factor for direct glucose metabolism in Br. fuscum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号