首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
K Pritchard  C.J Moody 《Cell calcium》1986,7(5-6):309-327
The protein caldesmon, originally isolated from smooth muscle tissue where it is the most abundant calmodulin-binding protein, has since been shown to have a wide distribution in actin- and myosin- containing cells where it is localized in sub-cellular structures concerned with motility, shape changes and exo- or endo-cytosis. Caldesmon is believed to be an actin- regulatory protein, and binds with high affinity to actin or actin-tropomyosin. Caldesmon inhibits the activation by actin-tropomyosin of myosin MgATPase activity, and the inhibition can be reversed by Ca2+.calmodulin. The binding of caldesmon to smooth muscle proteins has been studied in detail, enabling a model to be constructed which could account for the observed Ca2+ regulation of smooth muscle thin filaments. The abundance of caldesmon, and the Ca2+-regulation of its activity via calmodulin, mean that it is potentially an important intracellular regulator of processes such as smooth muscle contraction, cell motility and secretion.  相似文献   

3.
A simulation study is reported in which the effect of positive and negative autocorrelation on the quantiles of Student's t-test variable is investigated. It is shown that negative autocorrelations lead to smaller quantiles. Positive autocorrelations lead to larger quantiles.  相似文献   

4.
5.
6.
Jeffreys' approach for analyzing a 2×2-table is discussed via a Monte Carlo study. The main findings are reported.  相似文献   

7.
8.
9.
In the last 5 years a role for β‐catenin in the skeleton has been cemented. Beginning with mutations in the Lrp5 receptor that control β‐catenin canonical downstream signals, and progressing to transgenic models with bone‐specific alteration of β‐catenin, research has shown that β‐catenin is required for normal bone development. A cell critical to bone in which β‐catenin activity determines function is the marrow‐derived mesenchymal stem cell (MSC), where sustained β‐catenin prevents its distribution into adipogenic lineage. β‐Catenin actions are less well understood in mature osteoblasts: while β‐catenin contributes to control of osteoclastic bone resorption via alteration of the osteoprotegerin/RANKL ratio, a specific regulatory role during osteoblast bone synthesis has not yet been determined. The proven ability of mechanical factors to prevent β‐catenin degradation and induce nuclear translocation through Lrp‐independent mechanisms suggests processes by which exercise might modulate bone mass via control of lineage allocation, in particular, by preventing precursor distribution into the adipocyte pool. Effects resulting from mechanical activation of β‐catenin in mature osteoblasts and osteocytes likely modulate bone resorption, but whether β‐catenin is involved in osteoblast synthetic function remains to be proven for both mechanical and soluble mediators. As β‐catenin appears to support the downstream effects of multiple osteogenic factors, studies clarifying when and where β‐catenin effects occur will be relevant for translational approaches aimed at preventing bone loss and terminal adipogenic conversion. J. Cell. Biochem. 110: 545–553, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号