共查询到20条相似文献,搜索用时 15 毫秒
1.
Anna Rita Bizzarri Silvia Di Agostino Laura Andolfi Salvatore Cannistraro 《Journal of molecular recognition : JMR》2009,22(6):506-515
The tumor suppressor p53 interacts with the redox copper protein Azurin (AZ) forming a complex which is of some relevance in biomedicine and cancer therapy. To obtain information on the spatial organization of this complex when it is immobilized on a substrate, we have used tapping mode‐atomic force microscopy (TM‐AFM) imaging combined with computational docking. The vertical dimension and the bearing volume of the DNA binding domain (DBD) of p53, anchored to functionalized gold substrate through exposed lysine residues, alone and after deposing AZ, have been measured by TM‐AFM. By a computational docking approach, a three‐dimensional model for the DBD of p53, before and after addition of AZ, have been predicted. Then we have calculated the possible arrangements of these biomolecular systems on gold substrate by finding a good agreement with the related experimental distribution of the height. The potentiality of the approach combining TM‐AFM imaging and computational docking for the study of biomolecular complexes immobilized on substrates is briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
Kadir Demir Nesrin Kılıç Fahriye Ceyda Dudak İsmail Hakkı Boyacı Fatih Yaşar 《Molecular simulation》2014,40(13):1015-1025
The conformational states of two peptide sequences that bind to staphylococcal enterotoxin B are sampled by replica exchange molecular dynamic (REMD) simulations in explicit water. REMD simulations were treated with 52 replicas in the range of 280–501 K for both peptides. The conformational ensembles of both peptides are dominated by random coil, bend and turn structures with a small amount of helical structures for each temperature. In addition, while an insignificant presence of β-bridge structures were observed for both peptides, the β-sheet structure was observed only for peptide 3. The results obtained from simulations at 300 K are consistent with the experimental results obtained from circular dichroism spectroscopy. From the analysis of REMD results, we also calculated hydrophobic and hydrophilic solvent accessible surface areas for both peptides, and it was observed that the hydrophobic segments of the peptides tend to form bend or turn structures. Moreover, the free-energy landscapes of both peptides were obtained by principal component analysis to understand how the secondary structural properties change according to their complex space. From the free-energy analysis, we have found several minima for both peptides at decreased temperature. For these obvious minima of both peptides, it was observed that the random coil, bend and turn structures are still dominant and the helix, β-bridge or β-sheet structures can appear or disappear with respect to minima. On the other hand, when we compare the results of REMD with conventional MD simulations for these peptides, the configurations of peptide 3 might be trapped in energy minima during the conventional MD simulations. Hence, it can be said that the REMD simulations have provided a sufficiently high sampling efficiency. 相似文献
3.
Sanchita Rashi Chauhan Garima Soni Babu Sudhamalla 《Journal of biomolecular structure & dynamics》2013,31(8):874-887
Fusarium solani causes a wide variety of diseases in plants. Polyamine biosynthesis is responsible for the growth and pathogenicity of the fungus. The initial step of this pathway involves the decarboxylation of ornithine to putrescine, and is catalyzed by the enzyme ornithine decarboxylase (ODC). Inhibiting this process may be a promising approach for the management of fungal disease in various crops. Therefore, there is a need to develop inhibitors of ODC that have higher binding capacity than ornithine. Fifteen peptides were designed and modeled based on physicochemical properties of residues in the active site of ODC. The peptide GLIWGNGPF showed the highest dock score. It is assumed that the de novo design of peptides could be a potential approach to inhibit polyamine biosynthesis. Molecular dynamics studies make an important contribution to understanding the effect of the binding of peptides and the stability of an ODC-peptide complex system. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:8. 相似文献
4.
Three PBDEs (BDE25, BDE47, and BDE154) were selected to investigate the interactions between PBDEs and hen egg white lysozyme (HEWL) by molecular modeling, fluorescence spectroscopy, and FT‐IR spectra. The docking results showed that hydrogen bonds were formed between BDE25 and residue TRP63 and between BDE47 and TRP63 with bond lengths of 2.178 Å and 2.146 Å, respectively. The molecular dynamics simulations indicated that van der Waals forces played a predominant role in the binding of three PBDEs to HEWL. The observed fluorescence quenching can be attributed to the formation of complexes between HEWL and PBDEs, and the quenching mechanism is a static quenching. According to Förster's non‐radiative energy transfer theory, the binding distances r were < 7 nm, indicating a high probability of energy transfer from HEWL to the three PBDEs. The synchronous fluorescence showed that the emission maximum wavelength of tryptophan (TRP) residues emerged a red‐shift. FT‐IR spectra indicated that BDE25, BDE47 and BDE154 induced the α‐helix percentage of HEWL decreased from 32.70% ± 1.64% to 28.27% ± 1.41%, 27.50% ± 1.38% and 29.78% ± 1.49%, respectively, whereas the percentage of random coil increased from 26.67% ± 1.33% to 27.60% ± 1.38%, 29.18% ± 1.46% and 30.59% ± 1.53%, respectively. 相似文献
5.
The interaction between like-charged amino acid residues has been proposed to stabilize the folded state of peptides and proteins, and to modulate the substrate binding and the action mechanism of enzymes. We have used an alanine- and lysine-based peptide as a model system to study the interaction between like charges, and we have performed a 16-nsec molecular dynamics simulation in solution. The calculated potential of mean force for the approach of the lysine's Nzeta atoms showed a minimum at a distance of 0.7 nm, in agreement with the separation probabilities obtained from analysis of protein crystal structures. The analysis of the individual energy components showed that the solvent polarization pays for the approach of the like charges and that the van der Waals energies do not contribute significantly. The entropic contributions have been divided in conformational and desolvation terms. Both terms favor the formation of the charge pair. A 10-fold increase in counterion concentration was observed-with respect to its bulk concentration-next to the peptide charges, which helps to stabilize the peptide charges at a close distance. 相似文献
6.
《Bioorganic & medicinal chemistry》2016,24(20):4936-4948
The cyclic octa-peptide octreotide and its derivatives are used as diagnostics and therapeutics in relation to particular types of cancers. This led to investigations of their conformational properties using spectroscopic, NMR and CD, methods. A CF3-substituted derivative, that was designed to stabilize the dominant octreotide conformer responsible for receptor binding, turned out to have a lower affinity. The obtained spectroscopic data were interpreted as to show an increased flexibility of the CF3 derivative compared to the unsubstituted octreotide, which could then explain the lower affinity.In this article, we use MD simulation without and with time-averaged NOE distance and time-averaged local-elevation 3J-coupling restraining representing experimental NMR data to determine the conformational properties of the different peptides in the different solvents for which experimental data are available, that are compatible with the NOE atom–atom distance bounds and the 3JHNHα-couplings as derived from the NMR measurements. The conformational ensembles show that the CF3 substitution in combination with the change of solvent from water to methanol leads to a decrease in flexibility and a shift in the populations of the dominant conformers that are compatible with the experimental data. 相似文献
7.
Mohd Ishtikhar Anam Khan Chih-Kai Chang Lilian Tsai-Wei Lin Steven S.-S. Wang 《Journal of biomolecular structure & dynamics》2016,34(7):1409-1420
6-thioguanine (6-TG) is an antineoplastic, nucleobase guanine, purine analog drug belongs to thiopurine drug-family of antimetabolites. In the present study, we report an experimental approach towards interaction mechanism of 6-TG with human serum albumin (HSA) and examine the chemical stability of HSA in the presence of denaturants such as guanidine hydrochloride (GdnHCl) and urea. Interaction of 6-TG with HSA has been studied by various spectroscopic and spectropolarimeteric methods to investigate what short of binding occurs at physiological conditions. 6-TG binds in the hydrophobic cavity of subdomain IIA of HSA by static quenching mechanism which induces conformation alteration in the protein structure. That helpful for further study of denaturation process where change in secondary structures causes unfolding of protein that also responsible for severance of domain III from rest of the protein part. We have also performed molecular simulation and molecular docking study in the presence of denaturating agents to determine the binding property of 6-TG and the effect of denaturating agents on the structural activity of HSA. We had found that GdnHCl is more effective denaturating agent when compared to urea. Hence, this study provides straight evidence of the binding mechanism of 6-TG with HSA and the formation of intermediate or unfolding transition that causes unfolding of HSA. 相似文献
8.
Trzesniak D van Gunsteren WF 《Protein science : a publication of the Protein Society》2006,15(11):2544-2551
Cyclophilins are proteins that catalyze X-proline cis-trans interconversion, where X represents any amino acid. Its mechanism of action has been investigated over the past years but still generates discussion, especially because until recently structures of the ligand in the cis and trans conformations for the same system were lacking. X-ray crystallographic structures for the complex cyclophilin A and HIV-1 capsid mutants with ligands in the cis and trans conformations suggest a mechanism where the N-terminal portion of the ligand rotates during the cis-trans isomerization. However, a few years before, a C-terminal rotating ligand was proposed to explain NMR solution data. In the present study we use molecular dynamics (MD) simulations to generate a trans structure starting from the cis structure. From simulations starting from the cis and trans structures obtained through the rotational pathways, the seeming contradiction between the two sets of experimental data could be resolved. The simulated N-terminal rotated trans structure shows good agreement with the equivalent crystal structure and, moreover, is consistent with the NMR data. These results illustrate the use of MD simulation at atomic resolution to model structural transitions and to interpret experimental data. 相似文献
9.
Cosolvent,ions, and temperature effects on the structural properties of cecropin A‐Magainin 2 hybrid peptide in solutions 下载免费PDF全文
Antimicrobial peptides are promising alternative to traditional antibiotics and antitumor drugs for the battle against new antibiotic resistant bacteria strains and cancer maladies. The study of their structural and dynamics properties at physiological conditions can help to understand their stability, delivery mechanisms, and activity in the human body. In this article, we have used molecular dynamics simulations to study the effects of solvent environment, temperature, ions concentration, and peptide concentration on the structural properties of the antimicrobial hybrid peptide Cecropin A–Magainin 2. In TFE/water mixtures, the structure of the peptide retained α‐helix contents and an average hinge angle in close agreement with the experimental NMR and CD measurements reported in literature. Compared to the TFE/water mixture, the peptide simulated at the same ionic concentration lost most of its α‐helix structure. The increase of peptide concentration at both 300 and 310 K resulted in the peptide aggregation. The peptides in the complex retained the initial N‐ter α‐helix segment during all the simulation. The α‐helix stabilization is further enhanced in the high salt concentration simulations. The peptide aggregation was not observed in TFE/water mixture simulations and, the peptide aggregate, obtained from the water simulation, simulated in the same conditions did dissolve within few tens of nanoseconds. The results of this study provide insights at molecular level on the structural and dynamics properties of the CA‐MA peptide at physiological and membrane mimic conditions that can help to better understand its delivery and interaction with biological interfaces. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 1–14, 2015. 相似文献
10.
Morteza Chehelamirani 《Molecular simulation》2017,43(8):610-624
All-atom molecular dynamics (MD) simulations are performed to study the binding of DNA nucleotides with two carbon nanotubes (CNTs) with similar diameters but different chiralities. Two schemes for assigning partial atomic charges (PACs) are adopted: (I) using PACs obtained from isolated DNA nucleotide and CNT optimised in vacuum, and (II) using PACs obtained from optimising nucleotide-CNT hybrid in solution. The former approach is what most MD simulations have used in the study of DNA-CNT hybrids, while in the latter approach, a redistribution of the PACs has occurred upon the hybridisation. Our results show that the charge redistribution has a profound effect on the dynamics of binding. In particular, PACs obtained from (II) lead to more stable binding structures in the MD simulations. The findings suggest that care should be taken in simulating DNA-CNT interactions using the classical force field approach. 相似文献
11.
Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation 总被引:3,自引:0,他引:3
Positional probability density functions (pdf) for the atomic fluctuations are determined from a molecular dynamics simulation for hen egg-white lysozyme. Most atoms are found to have motions that are highly anisotropic but only slightly anharmonic. The largest deviations from harmonic motion are in the direction of the largest rms fluctuations in the local principal axis frame. Backbone atoms tend to be more nearly harmonic than sidechain atoms. The atoms with the largest anharmonicities tend to have pdfs with multiple peaks, each of which is close to harmonic. Several model pdfs are evaluated on the basis of how well they fit probability densities from the dynamics simulations when parameterized in terms of the moments of the distribution. Gram-Charlier and Edgeworth perturbation expansions, which have been successful in describing the motions of small molecules in crystals, are shown to be inadequate for the distributions found in the dynamics of proteins. Multipeaked distribution functions are found to be more appropriate. 相似文献
12.
Mokhtar Ganjali Koli 《Molecular membrane biology》2016,33(3-5):64-75
A molecular dynamics (MD) simulation with atomistic details was performed to examine the partitioning and transport behavior of moderately cytotoxic ionic liquids (ILs), namely choline bis(2-ethylhexyl) phosphate (CBEH), choline bis(2,4,4-trimethylpentyl) phosphinate (CTMP) and choline O,O-diethyl dithiophosphate (CDEP) in a fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer in the fluid phase at 323?K. The structure of ILs was so selected to understand if the role of dipole and dispersion forces in the ILs distribution in the membrane can be possible. Several analyses including mass density, electrostatic potential, order parameter, diffusion coefficients and hydrogen bond formation, was carried out to determine the precise location of the anionic species inside the membrane. Moreover, the potential of the mean force (PMF) method was used to calculate free energy profile for transferring anionic species from the DPPC membrane into the bulk water. While less cytotoxic DEP is located within the bulk water, more cytotoxic TMP and BEH ILs were found to remain in the membrane and the energy barrier for crossing through the bilayer center of BEH was higher. Various ILs have no significant effect on P–N vector. The thickness of lipid bilayer decreased in all systems comprising ILs, while area per lipid increased. 相似文献
13.
Barbara Orioni Jin Young Kim Giacinto Grande Yoonkyung Park Jae Il Kim Lorenzo Stella 《生物化学与生物物理学报:生物膜》2009,1788(7):1523-33
Several bioactive peptides exert their biological function by interacting with cellular membranes. Structural data on their location inside lipid bilayers are thus essential for a detailed understanding of their mechanism of action. We propose here a combined approach in which fluorescence spectroscopy and molecular dynamics (MD) simulations were applied to investigate the mechanism of membrane perturbation by the antimicrobial peptide PMAP-23. Fluorescence spectra, depth-dependent quenching experiments, and peptide-translocation assays were employed to determine the location of the peptide inside the membrane. MD simulations were performed starting from a random mixture of water, lipids and peptide, and following the spontaneous self-assembly of the bilayer. Both experimental and theoretical data indicated a peptide location just below the polar headgroups of the membrane, with an orientation essentially parallel to the bilayer plane. These findings, together with experimental results on peptide-induced leakage from large and giant vesicles, lipid flip-flop and peptide exchange between vesicles, support a mechanism of action consistent with the “carpet” model. Furthermore, the atomic detail provided by the simulations suggested the occurrence of an additional, more specific and novel mechanism of bilayer destabilization by PMAP-23, involving the unusual insertion of charged side chains into the hydrophobic core of the membrane. 相似文献
14.
To investigate the role of proline in defining β turn conformations within cyclic hexa- and pentapeptides we synthesized and determined the conformations of a series of L - and D -proline-containing peptides by means of 2D NMR spectroscopy and restrained molecular dynamics simulations. Due to cis/trans isomerism the L -proline peptides adopt at least two different conformations that are analyzed and compared to the structures of the corresponding D -proline peptides. The cis conformations of the compounds cyclo(-Pro-Ala-Ala-Pro-Ala-Ala-), cyclo(-Arg-Gly-Asp-Phe-Pro-Gly-), cyclo(-Arg-Gly-Asp-Phe-Pro-Ala-), cyclo(-Pro-Ala-Ala-Ala-Ala--), and cyclo(-Pro-Ala-Pro-Ala-Ala-) form uncommon βVI turns that mimic the turn geometries found in crystallographically refined protein structures at such a detailed level that even preferred side chain orientations are reproduced. The ratios of the cis/trans isomers are analyzed in terms of the steric demand of the proline-following residue. The conformational details derived from this study illustrate the importance of the examination of small model compounds derived from protein loop regions, especially if bioactive recognition sequences, such as RGD (Arg-Gly-Asp), are incorporated. © 1993 Wiley-Liss, Inc. 相似文献
15.
Alen T. Mathew Anurag T. K. Baidya Bhanuranjan Das Bharti Devi Rajnish Kumar 《Proteins》2023,91(2):147-160
Various posttranslational modifications like hyperphosphorylation, O-GlcNAcylation, and acetylation have been attributed to induce the abnormal folding in tau protein. Recent in vitro studies revealed the possible involvement of N-glycosylation of tau protein in the abnormal folding and tau aggregation. Hence, in this study, we performed a microsecond long all atom molecular dynamics simulation to gain insights into the effects of N-glycosylation on Asn-359 residue which forms part of the microtubule binding region. Trajectory analysis of the stimulations coupled with essential dynamics and free energy landscape analysis suggested that tau, in its N-glycosylated form tends to exist in a largely folded conformation having high beta sheet propensity as compared to unmodified tau which exists in a large extended form with very less beta sheet propensity. Residue interaction network analysis of the lowest energy conformations further revealed that Phe378 and Lys353 are the functionally important residues in the peptide which helped in initiating the folding process and Phe378, Lys347, and Lys370 helped to maintain the stability of the protein in the folded state. 相似文献
16.
Amyloid fiber formation and the possible polymorphism of molecular arrangements depend on the polypeptide length and composition. Here, we seek the chemical clues underlying these processes. Our starting point is based on the experimental observation that some short peptide segments are able to develop fibers that are very similar to those of their original parent proteins. We focus our study on the NFGAILSS peptide, derived from the human islet amyloid polypeptide (residues 22-29). This peptide turned out to be a perfect example, illustrating the fact that the amyloid microscopic organization is highly complex, rather than simply involving hydrogen bond formation. Furthermore, obtaining a reliable molecular model has allowed us to analyze the differences between the amyloid structure we have obtained for this peptide and that obtained for the previously studied, two residues shorter, segment (residues 22-27, NFGAIL). This comparative study yields some clues about chemical events that govern the aggregation of proteins into oriented fibers, such as molecular packing between sheets and the degree of interaction specificity. We characterize the important role played by the hydrophobic and aromatic residues in the inter-sheet association and present new approaches toward the understanding of the nature of events that are likely to take place during fibril formation. These include analysis of interaction patterns derived from specific sheet-associated packing. 相似文献
17.
Major histocompatibility (MHC) Class II cell surface proteins present antigenic peptides to the immune system. Class II structures in complex with peptides but not in the absence of peptide are known. Comparative molecular dynamics (MD) simulations of a Class II protein (HLA-DR3) with and without CLIP (invariant chain-associated protein) peptide were performed starting from the CLIP-bound crystal structure. Depending on the protonation of acidic residues in the P6 peptide-binding pocket the simulations stayed overall close to the start structure. The simulations without CLIP showed larger conformational fluctuations especially of alpha-helices flanking the binding cleft. Largest fluctuations without CLIP were observed in a helical segment near the peptide C-terminus binding region matching a segment recognized by antibodies specific for empty Class II proteins. Simulations on a Val86Tyr mutation that fills the peptide N-terminus binding P1 pocket or of a complex with a CLIP fragment (dipeptide) bound to P1 showed an unexpected long range effect. In both simulations the mobility not only of P1 but also of the entire binding cleft was reduced compared to simulations without CLIP. It correlates with the experimental finding that the CLIP fragment binding to P1 is sufficient to prevent antibody recognition specific for the empty form at a site distant from P1. The results suggest a mechanism how a local binding event of small peptides or of an exchange factor near P1 may promote peptide binding and exchange through a long range stabilization of the whole binding cleft in a receptive (near bound) conformation. 相似文献
18.
《Journal of molecular recognition : JMR》2017,30(11)
Metastatic melanoma is the most fatal type of skin cancer. The roles of matrix metalloproteinases (MMPs) have well been established in the onset of melanoma. Basigin (BSG) belongs to the immunoglobulin superfamily and is critical for induction of extracellular MMPs during the onset of various cancers including melanoma. Tumor necrosis factor receptor‐associated factor 6 (TRAF6) is an E3‐ligase that interacts with BSG and mediates its membrane localization, which leads to MMP expression in melanoma cells. This makes TRAF6 a potential therapeutic target in melanoma. We here conducted protein‐protein interaction studies on TRAF6 and BSG to get molecular level insights of the reactions. The structure of human BSG was constructed by protein threading. Molecular‐docking method was applied to develop the TRAF6‐BSG complex. The refined docked complex was further optimized by molecular dynamics simulations. Results from binding free energy, surface properties, and electrostatic interaction analysis indicate that Lys340 and Glu417 of TRAF6 play as the anchor residues in the protein interaction interface. The current study will be helpful in designing specific modulators of TRAF6 to control melanoma metastasis. 相似文献
19.
We have used EPR spectroscopy and computational modeling of nucleotide-analog spin probes to investigate conformational changes at the nucleotide site of myosin V. We find that, in the absence of actin, the mobility of a spin-labeled diphosphate analog [spin-labeled ADP (SLADP)] bound at the active site is strongly hindered, suggesting a closed nucleotide pocket. The mobility of the analog increases when the MV·SLADP complex (MV = myosin V) binds to actin, implying an opening of the active site in the A·MV·SLADP complex (A = actin). The probe mobilities are similar to those seen with myosin II, despite the fact that myosin V has dramatically altered kinetics. Molecular dynamics (MD) simulation was used to understand the EPR spectra in terms of the X-ray database. The X-ray structure of MV·ADP·BeFx shows a closed nucleotide site and has been proposed to be the detached state. The MV·ADP structure shows an open nucleotide site and has been proposed to be the A·MV·ADP state at the end of the working powerstroke. MD simulation of SLADP docked in the closed conformation gave a probe mobility comparable to that seen in the EPR spectrum of the MV·SLADP complex. The simulation of the open conformation gave a probe mobility that was 35-40° greater than that observed experimentally for the A·MV·SLADP state. Thus, EPR, X-ray diffraction, and computational analysis support the closed conformation as a myosin V state that is detached from actin. The MD results indicate that the MV·ADP crystal structure, which may correspond to the strained actin-bound post-powerstroke conformation resulting from head-head interaction in the dimeric processive motor, is superopened. 相似文献
20.
Jeffrey W. Peng Celia A. Schiffer Ping Xu Wilfred F. van Gunsteren Richard R. Ernst 《Journal of biomolecular NMR》1996,8(4):453-476
Summary The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 s at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight bound water molecules. Within the simulation time of 600 ps, no water molecule leaves the complex. Additionally, the simulations show a reduced flexibility for the complex in comparison with uncomplexed antamanide. Thus, there is a qualitative agreement between the experimental NMR results and the computer simulations. 相似文献