首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of neonatal growth retardation on subsequent spontaneous activity and activity following d-amphetamine (10 mg/kg, i.p.) was studied in CD-1 mice. Different growth rates were obtained by raising mice in litters of either 8 or 16 sucklings per lactating dam. The testing protocol was specifically designed to duplicate a procedure used to assess the influence of neonatal lead exposure on locomotor activity. At 35 to 37 days of age mice were individually tested for general locomotor activity and drug response. Developmental growth retardation influenced their pattern of habituation to the test apparatus and their locomotor response to emphetamine. It was concluded that growth retardation may partially account for behavioral effects previously attributed to the neurotoxic effects of viruses, 6-hydroxydopamine or inorganic lead.  相似文献   

2.
The parallel rod floor test is a new model of ataxia in mice. It allows the simultaneous measurement of ataxia and locomotor activity. This protocol is designed for researchers examining ethanol-induced motor incoordination in mice, but it should be applicable to other sedative/hypnotic drugs and to testing cerebellar mutant mice or mice with engineered genetic defects. This protocol takes 3 d, with the time per day depending on how many animals are tested. The test allows researchers to quantify differences in motor coordination among genotypes of mice that may differ in locomotor activity. Unlike many other methods for assessing incoordination, the parallel rod floor test yields similar patterns of genetic sensitivity across a range of variant forms of the apparatus.  相似文献   

3.
The locomotor development of three vervet infants across approximately the first 2 months of life is described. Fairly normal-looking walking movements (as compared to adults) were seen in all the animals by approximately 1 month of age and galloping was observed by 2 months. Early locomotor footfall patterns were often aberrant and bounding-type gaits were sometimes exhibited. Most of the symmetrical gaits observed were classifiable as lateral sequence. Across the 2-month period the animals showed decreased three- and four-foot support and improvements in joint angular displacement patterns. From their earliest locomotor movements the infants showed significant linear relationship between both cycle duration and swing and stance durations of the limbs. We suggest that locomotor control mechanisms are probably fairly mature at birth but that weight support and postural control problems explain the initial locomotor difficulties exhibited by these infants.  相似文献   

4.
Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long‐limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype‐function relationships.  相似文献   

5.
The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls. In constant darkness, the VIP/PHI-deficient mice exhibited pronounced abnormalities in their circadian system. The activity patterns started approximately 8 h earlier than predicted by the previous light cycle. In addition, lack of VIP/PHI led to a shortened free-running period and a loss of the coherence and precision of the circadian locomotor activity rhythm. In about one-quarter of VIP/PHI mice examined, the wheel-running rhythm became arrhythmic after several weeks in constant darkness. Another striking example of these deficits is seen in the split-activity patterns expressed by the mutant mice when they were exposed to a skeleton photoperiod. In addition, the VIP/PHI-deficient mice exhibited deficits in the response of their circadian system to light. Electrophysiological analysis indicates that VIP enhances inhibitory synaptic transmission within the SCN of wild-type and VIP/PHI-deficient mice. Together, the observations suggest that VIP/PHI peptides are critically involved in both the generation of circadian oscillations as well as the normal synchronization of these rhythms to light.  相似文献   

6.
Activation of macrophages via toll-like receptors (TLRs) is important for inflammation and host defense against pathogens. Recent data suggest that non-pathogenic molecules released by trauma also can trigger inflammation via TLR2 and TLR4. Here, we tested whether TLRs are regulated after sterile spinal cord injury (SCI) and examined their effects on functional and anatomical recovery. We show that mRNA for TLR1, 2, 4, 5, and 7 are increased after SCI as are molecules associated with TLR signaling (e.g. MyD88, NFkappaB). The significance of in vivo TLR2 and TLR4 signaling was evident in SCI TLR4 mutant (C3H/HeJ) and TLR2 knockout (TLR2-/-) mice. In C3H/HeJ mice, sustained locomotor deficits were observed relative to SCI wild-type control mice and were associated with increased demyelination, astrogliosis, and macrophage activation. These changes were preceded by reduced intraspinal expression of interleukin-1beta mRNA. In TLR2-/- mice, locomotor recovery also was impaired relative to SCI wild-type controls and novel patterns of myelin pathology existed within ventromedial white matter--an area important for overground locomotion. Together, these data suggest that in the absence of pathogens, TLR2 and TLR4 are important for coordinating post-injury sequelae and perhaps in regulating inflammation and gliosis after SCI.  相似文献   

7.
Effect on locomotion of indole alkaloids from the hooks of uncaria plants.   总被引:3,自引:0,他引:3  
Three predominant Uncariae plants, Uncaria rhynchophylla U. sinensis and U. macrophylla and their indole and oxindole alkaloid constituents were studied for their effect on locomotor response. Water extracts of U. macrophylla and U. sinensis and four indole alkaloids, corynoxine, corynoxine B, isorhynchophylline and geissoschizine methyl ether, significantly decreased locomotor activity after oral administration to mice. The depression of locomotor activity upon administration of these alkaloids appears to be due to mediating of the central dopaminergic system.  相似文献   

8.
Low levels of monoamine oxidase-B (MAO-B) activity, such as those observed in smokers, are also associated with behavioral traits such as a heightened responsiveness to novelty. However, the exact mechanism by which low MAO-B activity influences smoking and heightened responsiveness to novelty is still poorly understood. We used MAO-B knockout (KO) mice to test the hypothesis that MAO-B concomitantly affects locomotor responses in a novel inescapable open field and nicotine intake. Male wild-type (WT) and MAO-B KO mice were placed in an inescapable open field and their horizontal locomotor activity was measured for 30 min per day for 5 days. MAO-B KO mice exhibited impaired within-session habituation of locomotor activity, as compared to WT mice. Separate groups of male WT and MAO-B KO mice were individually housed in their home cages with two water bottles. One of the bottles contained tap water and the other contained nicotine (0, 3.125, 6.25, 12.5, 25, 50 or 100 micro g/ml). The total amount of water and nicotine solution consumed was measured every three days for 16 days. MAO-B KO mice and WT mice consumed equal amounts of nicotine and exhibited comparable concentration-dependent nicotine preference and aversion over a period of 16 days. The data suggest that the absence of MAO-B impairs the ability of mice to habituate in the inescapable environment, but does not alter their nicotine intake.  相似文献   

9.
Overproduction of corticotrophin-releasing factor (CRF), the major mediator of the stress response, has been linked to anxiety, depression and addiction. CRF excess results in increased arousal, anxiety and altered cognition in rodents. The ability to adapt to a potentially threatening stimulus is crucial for survival, and impaired adaptation may underlie stress-related psychiatric disorders. Therefore, we examined the effects of chronic transgenic neural CRF overproduction on behavioural adaptation to repeated exposure to a non-home cage environment. We report that CRF transgenic mice show impaired adaptation in locomotor response to the novel open field. In contrast to wild-type (WT) mice, anxiety-related behaviour of CRF transgenic mice does not change during repeated exposure to the same environment over the period of 7 days or at retest 1 week later. We found that locomotor response to novelty correlates significantly with total locomotor activity and activity in the centre at the last day of testing and at retest in WT but not in CRF transgenic mice. Mice were divided into low responders and high responders on the basis of their initial locomotor response to novelty. We found that differences in habituation and re-exposure response are related to individual differences in locomotor response to novelty. In summary, these results show that CRF transgenic mice are fundamentally different from WT in their ability to adapt to an environmental stressor. This may be related to individual differences in stress reactivity. These findings have implications for our understanding of the role of CRF overproduction in behavioural maladaptation and stress-related psychiatric disorders.  相似文献   

10.
11.
目的研究阿尔茨海默病APP/PS双转基因小鼠自主行为的改变和作为阿尔茨海默病行为特征的可行性。方法对APPswe/PSΔE9双转基因小鼠和野生鼠分别在4月龄、6月龄、8月龄进行旷场自主行为实验,并与Morris水迷宫分析进行比较,利用SPSS16.0软件统计分析。结果在4月龄、6月龄转基因小鼠的学习记忆能力、以及自主性探究性行为与野生鼠比较有明显的差异。表现为:模型鼠学习记忆能力减弱,兴奋性增高,自主活动增加。这些表现与临床患者的症状有许多相似性,8月龄时,差异减小。结论APPswe/PSΔE9双转基因小鼠的自主行为学表现为烦躁不安,自主活动增加,与阿尔茨海默病患者的临床表现有许多相似之处,可作为小鼠模型判别的行为标志之一,在阿尔茨海默病的病因病机研究和药物研发等方面具有一定的应用价值。  相似文献   

12.
Kim HC  Bing G  Shin EJ  Jhoo HS  Cheon MA  Lee SH  Choi KH  Kim JI  Jhoo WK 《Life sciences》2001,69(6):615-624
In order to understand the underlying mechanisms responsible for the behaviors mediated by dextromethorphan (DM), we examined the effects of DM on locomotor activity and locomotor patterns in mice, and Fos-related antigen immunoreactivity (FRA-IR) of mouse brain following repeated administration of cocaine. Combined treatments (30 min prior to each cocaine administration) with DM dose-dependently decreased locomotor activity for high doses of cocaine (20 mg/kg, i.p./day x 7). DM combinations did not significantly affect hyperactivity for 10 mg cocaine/kg, i.p./day x 7. In contrast, combined treatments with DM increased the locomotor activity for 5 mg cocaine/kg, i.p./day x 7. These results were consistent with alterations in marginal activity. Repeated administration with cocaine or DM increased FRA-IR in the nucleus accumbens (NAc) and striatum which lasted for at least 7 days. Our results suggest that DM exhibits biphasic effects on the locomotor stimulation induced by cocaine, and that locomotor activities are in parallel with FRA-IR of the striatal complex. However, the role of FRA-IR regulated by DM or/and cocaine remains to be further determined.  相似文献   

13.
Human Type 2 diabetes is associated with increased incidence of hypertension and disrupted blood pressure (BP) circadian rhythm. Db/db mice have been used extensively as a model of Type 2 diabetes, but their BP is not well characterized. In this study, we used radiotelemetry to define BP and the circadian rhythm in db/db mice. We found that the systolic, diastolic, and mean arterial pressures were each significantly increased by 11, 8, and 9 mmHg in db/db mice compared with controls. In contrast, no difference was observed in pulse pressure or heart rate. Interestingly, both the length of time db/db mice were active (locomotor) and the intensity of locomotor activity were significantly decreased in db/db mice. In contrast to controls, the 12-h light period average BP in db/db mice did not dip significantly from the 12-h dark period. A partial Fourier analysis of the continuous 72-h BP data revealed that the power and the amplitude of the 24-h period length rhythm were significantly decreased in db/db mice compared with the controls. The acrophase was centered at 0141 in control mice, but became scattered from 1805 to 0236 in db/db mice. In addition to BP, the circadian rhythms of heart rate and locomotor activity were also disrupted in db/db mice. The mean arterial pressure during the light period correlates with plasma glucose, insulin, and body weight. Moreover, the oscillations of the clock genes DBP and Bmal1 but not Per1 were significantly dampened in db/db mouse aorta compared with controls. In summary, our data show that db/db mice are hypertensive with a disrupted BP, heart rate, and locomotor circadian rhythm. Such changes are associated with dampened oscillations of clock genes DBP and Bmal1 in vasculature.  相似文献   

14.
It has been suggested that some animals are much more capable of perceiving certain kinds of geophysical stimuli which may precede earthquakes than humans, but the anecdotal phenomena or stories about unusual animal behaviors prior to an earthquake should be interpreted with objective data. During the Wenchuan magnitude 8.0 earthquake that happened in Wenchuan county (31.0° north latitude, 103.4° east longitude) of Sichuan province, China, on May 12, 2008, eight mice were monitored for locomotor activity and circadian rhythm in constant darkness with temperature 22–24 °C and humidity 55–65% for 38 days. The ongoing monitoring of locomotor activity of mice in our laboratory made it possible to design a posteriori study investigating whether the earthquake was associated with any change in animal behavior. Based on analyzing the recorded data with single cosinor, we found that the locomotor activity dramatically decreased in six of these eight mice on day 3 before the earthquake, and the circadian rhythm of their locomotor activity was no longer detected. The behavioral change lasted for 6 days before the locomotor activity returned to its original state. Analyses of concurrent geomagnetic data showed a higher total intensity during the span when the circadian rhythm in locomotor activity weakened. These results indicated that the behaviors, including circadian rhythm and activity, in these mice indeed changed prior to the earthquake, and the behavioral change might be associated with a change of geomagnetic intensity. Bioelectromagnetics 30:613–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Animals should be able to adjust their behavior by tracking changes in predation risk level continuously. Many animals show a pattern of intermittent locomotion with short pauses that may increase detection and vigilance of predators. These locomotor patterns may depend on the microhabitat structure, which affect predation risk levels. We examined in detail in the laboratory the characteristics of spontaneous locomotion, scanning behavior, and the escape performance of Psammodromus algirus lizards moving in two different microhabitats (leaf litter patches and open sand areas). Results showed that in leaf litter, lizards moved at slower speed and had shorter bursts of locomotion both in distance and duration, than in sand substrates. This locomotor pattern allowed lizards to increase scanning rate and total time spent in vigilance behavior. When lizards were forced to flee, they escaped to longer distances and during more time in open sand areas, but lizards were able to attain similar escape speed in the two substrates. Lizards may be able to compensate the cost of moving between different microhabitats with different predation risk by behaviorally changing their locomotor and vigilance patterns. However, complex interactions between the visibility of lizards to predators and the ability of lizards to detect predators, together with the need of attending simultaneously to other conflicting demands, may lead to apparently non‐intuitive solutions in locomotor patterns and the rate of vigilance behavior.  相似文献   

16.
Substantial interindividual variability exists in the propensity to develop opiate addiction. Genetic variation in opiate reward may contribute to this variability. A large body of evidence indicates genetic variation in mice for several effects of opiate drugs. The present study examined heroin-induced place conditioning and locomotor sensitization in the two strains of mice employed most frequently in the generation of transgenic animals, C57BL/6J (B6) and 129X1/sVJ (129), as well as in groups of B6-129 hybrid mice, differing in their amount of B6 genetic background. Four pairings of 100 microg/kg of heroin elicited robust place conditioning and locomotor sensitization in B6 controls and in N(10) congenic B6-129 hybrid mice. In comparison, the identical treatment produced no locomotor sensitization and induced place aversion in 129 controls. No heroin-induced changes in the behaviour of N(3) congenic B6-129 hybrid mice or F5-8 non-congenic B6-129 hybrid mice were observed. The expression of place conditioning was not facilitated in any group by the administration of a heroin-priming injection prior to testing. These data indicate that genetic variation exists in mice for the rewarding and locomotor-sensitizing effects of heroin and that the capacity of heroin to induce conditioned reward and locomotor sensitization can be modulated in a B6 strain dose-dependent manner in B6-129 hybrid mice. Thus, strain differences in heroin responsiveness should be considered when examining transgenic lines on B6-129 backgrounds for opiate-induced changes in behaviour that may be relevant for addiction.  相似文献   

17.
We have shown previously that mice lacking the adenosine A2A receptor (A2AR) generated on a CD1 background self‐administer more ethanol and exhibit hyposensitivity to acute ethanol. We aimed to investigate if the increased propensity of A2A?/? mice to consume ethanol is associated with an altered sensitivity in the motivational properties of ethanol in the conditioned place preference (CPP) and conditioned taste aversion (CTA) paradigms and with an altered development of sensitization to the locomotor effects of ethanol. We also tested their sensitivity to the anxiolytic effects of ethanol. Our results show that A2A?/? mice produced on a CD1 background displayed a reduced ethanol‐induced CPP and an increased sensitivity to the anxiolytic and locomotor‐stimulant effects of ethanol, but they did not show alteration in ethanol‐induced CTA and locomotor sensitization. Ethanol‐induced CPP, ethanol consumption and the locomotor effects of ethanol were also tested in A2A?/? mice produced on a C57BL/6J background. Our results emphasized the importance of the genetic background because alteration in ethanol consumption and preference, ethanol‐induced CPP and locomotor‐stimulant effects were not found in knockout mice produced on the alcohol‐preferring C57BL/6J genetic background. Finally, the A2AR agonist, 2‐p‐(2‐carboxyethyl)‐phenylethylamino‐5′‐N‐ethylcarboxamidoadenosine hydrochloride (CGS 21680), reduced ethanol consumption and preference in C57BL/6J mice. In conclusion, A2AR deficiency in mice generated on a CD1 background leads to high ethanol consumption that is associated with an increased sensitivity to the locomotor‐stimulant/anxiolytic effects of ethanol and a decrease in ethanol‐induced CPP.  相似文献   

18.
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F2 mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the α3 nAChR subunit gene ( Chrna3 ). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (α5 and β4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/−) and wild-type (+/+) mice; +/− mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination.  相似文献   

19.
To determine whether and how the strength of coupling between respiratory and stepping rhythms varies depending on locomotor patterns, correlation analysis was done of diaphragmatic and gastrocnemius muscle activities. In spontaneously breathing cats decerebrated at the precollicular-post-mammillary level, tonic electrical stimulation was delivered to the mesencephalic locomotor region to induce locomotion on a treadmill. Electromyograms were recorded from the left hemidiaphragm and the bilateral gastrocnemius muscles. Various locomotor patterns were elicited by changes in the belt speed of the treadmill and in the intensity of stimulation of the mesencephalic locomotor region. Cross-correlograms between diaphragmatic and gastrocnemius activities showed that coupling was absent or weak when the cats walked slowly. The strength of locomotor-respiratory coupling tended to increase as the mean stepping interval shortened. When the animals were galloping, the respiratory rhythm was entrained 1:1 with the stepping rhythm. This study showed that the strength of coupling between respiratory and stepping rhythms varied depending on the locomotor patterns elicited, especially on whether the animals were running.  相似文献   

20.
Growth hormone (GH) replacement in hypopituitary patients improves well-being and initiative. Experimental studies indicate that these psychic effects may be reflected in enhanced locomotor activity in mice. It is unknown whether these phenomena are mediated directly by GH or by circulating IGF-I. IGF-I production in the liver was inactivated at 6-10 wk of age (LI-IGF-I-/- mice), resulting in an 80-85% reduction of circulating IGF-I, and, secondary to this, increased GH secretion. Using activity boxes on three different occasions during 1 wk, 6-mo-old LI-IGF-I-/- mice had similar activity levels, and 14-mo-old mice had a moderate but significant decrease in activity level, compared with control mice. At 20 mo of age, the LI-IGF-I-/- mice displayed a more prominent decrease in activity level with decreased horizontal activity throughout the test period, and at day 1, there were several signs of an altered habituation process with different time patterns of locomotor activity and horizontal activity compared with the control mice. At days 3 and 5, rearing activity was lower in the 20-mo-old LI-IGF-I-/- mice. Anxiety level was unaffected in all age groups, as measured using the Montgomery's elevated plus-maze. In conclusion, old LI-IGF-I-/- mice displayed a decrease in both horizontal and rearing (exploratory) activity level and an altered habituation process. These results indicate that liver-derived IGF-I mediates at least part of the effects of GH on exploratory activity in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号