首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here that large conductance K(+) selective channel in adrenal chromaffin granules is controlled by pH. We measured electrogenic influx of (86)Rb(+) into chromaffin granules prepared from bovine adrenal gland medulla. The (86)Rb(+) influx was inhibited by acidic pH. Purified chromaffin granule membranes were also fused with planar lipid bilayer. A potassium channel with conductance of 432+/-9 pS in symmetric 450 mM KCl was observed after reconstitution into lipid bilayer. The channel activity was unaffected by charybdotoxin, a blocker of the Ca(2+)-activated K(+) channel of large conductance. It was observed that acidification to pH 6.4 cis side of the membrane lowered the channel open probability and single channel conductance. Whereas only weak influence on the single channel current amplitude and open probability were observed upon lowering of the pH at the trans side. We conclude that a pH-sensitive large conductance potassium channel operates in the chromaffin granule membrane.  相似文献   

2.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

3.
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.  相似文献   

4.
A K+ channel was incorporated into voltage-clamped planar lipid bilayers from bovine chromaffin granules and resealed granule membranes (ghosts). It was not incorporated from plasma membrane-rich fractions from the adrenal medulla. The channel had a conductance of 400 pS in symmetric 450 mM KCI, with the permeability sequence K+ > Rb+ > Cs+ > Na+ > Li+, and was insensitive to both Ca2+ and charybdotoxin. It exhibited complex gating kinetics, consistent with the presence of multiple open and closed states, and its gating was voltage-dependent. The channels appeared to incorporate into bilayers with the same orientation, and were blocked from one side (the side of vesicle addition) by 0.2-1 mM TEA'. The block was slightly voltage-dependent. Acidification of resealed granule membranes in response to external ATP (which activated the vacuolartype ATPase) was significantly reduced in the presence of 1 mM intralumenal TEACI (with 9 mM KCl), and parallel measurements with the potential-sensitive dye Oxonol V showed that such vesicles tended to develop higher internal-positive membrane potentials than control vesicles containing only 10 mM KCI. 1 mM TEA+ had no effect on proton-pumping activity when applied externally, and did not directly affect either the proton-pumping or ATP hydrolytic activity of the partially-purified ATPase. These results suggest that chromaffin granule membranes contain a TEA+-sensitive K+ channel which may have a role in regulating the vesicle membrane potential. Correspondence to: R. H. Ashley  相似文献   

5.
6.
Oxidative stress to B-cells is thought to be of relevance in declining B-cell function and in the process of B-cell destruction. In other tissues including heart, brain and liver, oxidative stress has been shown to elevate the intracellular free calcium concentration and to provoke potassium efflux. We studied the effect of oxidative stress on Ca2+ and K+ (Rb+) outflow from pancreatic islets using the thiol oxidants DIP and BuOOH. Both compounds reversibly increased 86Rb+ efflux in the presence of 3 and 16.7 mmol/l glucose. Stimulation of 86Rb+ efflux was also evident in the absence of calcium. DIP evoked release of 45Ca2+ from the pancreatic islets both in the presence or absence of extracellular calcium. Employing inhibitors of the calcium-activated potassium channel (KCa) and the high conductance K+-channel (BKCa), the effect of DIP on 86Rb+ efflux was slightly diminished. Tolbutamide had no effect on 86Rb+ efflux in the presence of DIP. On the other hand thapsigargin, a blocker of the Ca2+-ATPase of the endoplasmic reticulum, completely suppressed the DIP-mediated 86Rb+ outflow. The data suggest that thiol oxidant-induced potassium efflux from pancreatic islets is mainly mediated through liberation of intracellular calcium and subsequent stimulation of calcium-activated potassium efflux.  相似文献   

7.
Adrenal medullary chromaffin cells secrete catecholamines through exocytosis of their intracellular chromaffin granules. Osmotic granule swelling has been implicated to play a role in the generation of membrane stress associated with the fusion of the granule membrane. However, controversy exists as to whether swelling occurs before or after the actual fusion event. Using morphometric methods we have determined the granule diameter distributions in rapidly frozen, freeze-substituted chromaffin cells. Our measurements show that intracellular chromaffin granules increase in size from an average of 234 nm to 274 nm or 277 nm in cells stimulated to secrete with nicotine or high external K+, respectively. Granule swelling occurs before the formation of membrane contact. Ammonium chloride, an agent which inhibits stimulated catecholamine secretion by approximately 50% by altering the intragranular pH, also inhibits granule swelling. In addition, ammonium chloridetreated secreting cells show more granule-plasma membrane contacts than untreated secreting cells. Sodium propionate induces granule swelling in the absence of secretagogue and has been shown to enhance nicotine- and high K+- induced catecholamine release. These results indicate that in adrenal chromaffin cells granule swelling is an essential step in exocytosis before fusion pore formation, and is related to the pH of the granule environment.  相似文献   

8.
Synechococcus R-2 is a unicellular blue-green alga. The cells will grow on Rb+ as a substitute for K+ but at a slower rate (t2~ 15 h versus 12 h). Potassium is not, strictly speaking, an essential element for Synechococcus. Rubidium duxes (using 86Rb+) are much slower than those of potassium, about 1 nmol m?2 s?1 in the light (0.35 mol m?3 Rb+). 86Rb+ fluxes in the dark are about 0.1 nmol m?2 s?1. These fluxes are very slow compared to those of Na+ and other ions. Isotopic influx of Rb+ can supply sufficient Rb+ to keep up with the demands for growth, but the net dux needed to keep up with growth in the light is a large proportion of the total observed dux. Kinetic studies of Rb+ uptake versus [Rb+] show two uptake phases consistent with a high-affinity and a low-affinity system. Both systems appear to be light-activated. Transport of Rb+ appears to be passive at pHo 10 in the light and dark. There is no case for active transport of Rb+ at pHo 7.5 in the light, but a marginal case for active uptake in the dark (about 3 kJ mol?1). There is only a small effect of Na+ upon Rb+ transport. 86Rb+ should not be used in place of 42K+ in K+ nutrition studies as the details of Rb+ transport are different to those of K+ transport.  相似文献   

9.
Summary The properties of transporters (or channels) for monovalent cations in the membrane of isolated pancreatic zymogen granules were characterized with an assay measuring bulk cation influx driven by a proton diffusion potential. The proton diffusion potential was generated by suspending granules in an isotonic monovalent cation/acetate solution and increasing the proton conductance of the membrane with a protonophore. Monovalent cation conductance had the sequence Rb+ > K+ > Na+ > Cs+ > Li+ > N-methyl glucamine+. The conductance could be inhibited by Ca2+, Mg2+, Ba2+, and pharmacological agents such as quinine, quinidine, glyburide and tolbutamide, but not by 5 mm tetra-ethyl ammonium or 5mm 4-aminopyridine, when applied to the cytosolic surface of the granule membrane. Over 50% of K+ conductance could be inhibited by millimolar concentrations of ATP or MgATP. The inhibition by MgATP, but not by ATP itself, was reversed by the K+ channel opener diazoxide. The inhibitory effect is probably by a noncovalent interaction since it could be mimicked by nonhydrolyzable analogs of ATP and by ADP. The reversal of MgATP inhibition by diazoxide may be mediated by phosphorylation since it was not affected by dilution, and was blocked by the protein kinase inhibitor H7. The properties of the K+ conductance of pancreatic zymogen granule membranes are similar to those of ATP-sensitive K+ channels found in the plasma membrane of insulin-secreting islet cells, neurons, muscle, and renal cells.This research was supported by grants from the Cystic Fibrosis Foundation (ZO298) and NIH (DK-39658). F.T. is recipient of a Fellowship from the American Cystic Fibrosis Foundation. K.C.V. is a participant of a summer research program for undergraduate students from Knox College, Galesburg, IL.  相似文献   

10.
In developing seeds of bean (Phaseolus vulgaris L.), phloem‐imported assimilates (largely sucrose and potassium) are released from coats to seed apoplasm and subsequently retrieved by the dermal cell complexes of cotyledons. To investigate the mechanisms of K+ uptake by the cotyledons, protoplasts of dermal cell complexes were isolated and whole‐cell currents across their plasma membranes were measured with the patch‐clamp technique. A weakly rectified cation current displaying a voltage‐dependent blockade by external Ca2+ and acidic pH, dominated the conductance of the protoplasts. The P haseolus v ulgaris Cotyledon Dermal‐cell pH and Calcium‐dependent Cation Conductance (Pv‐CD‐pHCaCC) was highly selective for K+ over Ca2+ and Cl. For K+ current through Pv‐CD‐pHCaCC a sigmoid shaped current–voltage (IV) curve was observed with negative conductance at voltages between ?200 and ?140 mV. This negative K+ conductance was Ca2+ dependent. With other univalent cations (Na+, Rb+, NH4+) the currents were smaller and were not Ca2+ dependent. Reversal potentials remained constant when external K+ was substituted with these cations, suggesting that Pv‐CD‐pHCaCC channels were non‐selective. The Pv‐CD‐pHCaCC would provide a pathway for K+ and other univalent cation influx into developing cotyledons. These cation influxes could be co‐ordinated with sucrose influx via pH and Ca2+dependence.  相似文献   

11.
We have previously reported on the biochemical properties of a Na+,K+,2Cl?-cotransport in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl?-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumet-anide-sensitive Na+, K+, 2Cl?-cotransport system and the ouabain-sensitive Na+/K+-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a β-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168:148–154, 1990), this study indicates that ANP participates in the regulation of the Na+, K+, 2Cl?-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative α-methyl-aminoisobutyric acid (metAlB, 1 and 5 mM, respectively) also reduced Na+, K+, 2Cl?-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the cotransporter. In addition, the Na+/K+-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-cGMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K+-pump.  相似文献   

12.
Fusicoccin (FC) has long been known to promote K+ uptake in higher plant cells, including stomatal guard cells, yet the precise mechanism behind this enhancement remains uncertain. Membrane hyperpolarization, thought to arise from primary H+ pumping stimulated in FC, could help drive K+ uptake, but the extent to which FC stimulates influx and uptake frequently exceeds any reasonable estimates from Constant Field Theory based on changes in the free-running membrane potential (V m) alone; furthermore, unidirectional flux analyses have shown that in the toxin K+ (86Rb+) exchange plummets to 10% of the control (G.M. Clint and E.A.C. MacRobbie 1984, J. Exp. Bot.35 180–192). Thus, the activities of specific pathways for K+ movement across the membrane could be modified in FC. We have explored a role for K+ channels in mediating these fluxes in guard cells ofVicia faba L. The correspondence between FC-induced changes in chemical (86Rb+) flux and in electrical current under voltage clamp was followed, using the K+ channel blocker tetraethylammonium chloride (TEA) to probe tracer and charge movement through K+-selective channels. Parallel flux and electrical measurements were carried out when cells showed little evidence of primary pump activity, thus simplifying analyses. Under these conditions, outward-directed K+ channel current contributed appreciably to charge balance maintainingV m, and adding 10 mM TEA to block the current depolarized (positive-going)V m; TEA also reduced86Rb+ efflux by 68–80%. Following treatments with 10 M FC, both K+ channel current and86Rb+ efflux decayed, irreversbly and without apparent lag, to 10%–15% of the controls and with equivalent half-times (approx. 4 min). Fusicoccin also enhanced86Rb+ influx by 13.9-fold, but the influx proved largely insensitive to TEA. Overall, FC promotednet cation uptake in 0.1 mM K+ (Rb+), despite membrane potentials which were 30–60 mVpositive of the K+ equilibrium potential. These results tentatively link (chemical) cation efflux to charge movement through the K+ channels. They offer evidence of an energy-coupled mechanism for K+ uptake in guard cells. Finally, the data reaffirm early suspicions that FC alters profoundly the K+ transport capacity of the cells, independent of any changes in membrane potential.Abbreviations and symbols E K equilibrium potential for K+ - FC fusicoccin - Hepes 4-(2-hydroxyethyl)-1-piperazineeth-anesulfonic acid - G m membrane (slope) conductance atV m - I-V current-voltage (relationship) - apparent rate constant for exchange - K i + , K 0 + intracellular, extracellular K+ (concentration) - TEA tetraethylammonium chloride - V m free-running membrane potential (difference)  相似文献   

13.
F. W. Bentrup  H. Pfrüner  G. Wagner 《Planta》1973,110(4):369-372
Summary The apparent influx of 36Cl- and 86Rb+/K+ into cells from the higher plant Petroselinum sativum has been measured during the presence and absence in the culture medium of indolacetic acid (IAA) which is an essential auxin of these cells. While 10-5 M IAA did not significantly affect the influx of 86Rb+/K+, it substantially reduced that of 36Cl-, i.e. by a factor 0.25 within 30 min. This differential action of IAA, which holds for a reasonable range of external pH, is assumed to bear on current hypotheses that the primary events of auxin action involve plasmalemma functions.  相似文献   

14.
Summary ADH, acting through cAMP, increases the potassium conductance of apical membranes of mouse medullary thick ascending limbs of Henle. The present studies tested whether exposure of renal medullary apical membranes in vitro to the catalytic subunit of cAMP-dependent protein kinase resulted in an increase in potassium conductance. Apical membrane vesicles prepared from rabbit outer renal medulla demonstrated bumetanide-and chloride-sensitive22Na+ uptake and barium-sensitive, voltage-dependent86Rb+-influx. When vesicles were loaded with purified catalytic subunit of cAMP-dependent protein kinase (150 mU/ml), 1mm ATP, and 50mm KCl, the barium-sensitive86Rb+ influx increased from 361±138 to 528±120pm/mg prot · 30 sec (P<0.01). This increase was inhibited completely when heat-stable protein kinase inhibitor (1 g/ml) was also present in the vesicle solutions. The stimulation of86Rb+ uptake by protein kinase required ATP rather than ADP. It also required opening of the vesicles by hypotonic shock, presumably to allow the kinase free access to the cytoplasmic face of the membranes. We conclude that cAMP-dependent protein kinase-mediated phosphorylation of apical membranes from the renal medulla increases the potassium conductance of these membranes. This mechanism may account for the ADH-mediated increase in potassium conductance in the mouse mTALH.  相似文献   

15.
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age.  相似文献   

16.
The influx rate of 86Rb decreases during accumulation of K+ or Rb+ into metabolizing yeast cells under anaerobic conditions with glucose as substrate. Possible causes for the decrease in the influx rate are examined. It is ruled out that the decrease in the influx rate is caused by an increased turgor pressure of the cells or to an impairment of their energization. During the accumulation of K+ or Rb+, no decrease but an increase in the protonmotive force of the cells is found. The concomitant increase in cell pH accounts only in small part for the decrease in the influx rates. Acidification of the cells on adding butyrate to the suspension causes a transient increase in the influx rates, whereas the cellular monovalent cation content is still increased. Consequently, no direct relationship is found between the influx rate and the cellular content of K+ and Rb+.  相似文献   

17.
KAT1 is a cloned voltage-gated K+ channel from the plant Arabidopsis thaliana L., which displays an inward rectification reminiscent of `anomalous' rectification of the i f pacemaker current recorded in animal cells. Macroscopic conductance of KAT1 expressed in Xenopus oocytes was 5-fold less in pure Rb+ solution than in pure K+ solution, and negligible in pure Na+ solution. Experiments in different K+/Na+ or K+/Rb+ mixtures revealed deviations from the principle of independence and notably two anomalous effects of the K+/Rb+ mole fraction (i.e., the ratio [K+]/([K+]+[Rb+])). First, the KAT1 deactivation time constant was both voltage- and mole fraction-dependent (a so-called `foot in the door' effect was thus observed in KAT1 channel). Second, when plotted against the K+/Rb+ mole fraction, KAT1 conductance values passed through a minimum. This minimum is more important for two pore mutants of KAT1 (T259S and T260S) that displayed an increase in PRb/PK. These results are consistent with the idea that KAT1 conduction requires several ions to be present simultaneously within the pore. Therefore, this atypical `green' member of the Shaker superfamily of K+ channels further shows itself to be an interesting model as well for permeation as for gating mechanism studies. Received: 9 February 1998/Revised: 28 July 1998  相似文献   

18.
Potassium channels are a diverse family of integral membrane proteins through which K+ can pass selectively. There is ongoing debate about the nature of conformational changes associated with the opening/closing and conductive/nonconductive states of potassium channels. The channels partly exert their function by varying their conductance through a mechanism known as C-type inactivation. Shortly after the activation of K+ channels, their selectivity filter stops conducting ions at a rate that depends on various stimuli. The molecular mechanism of C-type inactivation has not been fully understood yet. However, the X-ray structure of the KcsA channel obtained in the presence of low K+ concentration is thought to be representative of a K+ channel in the C-type inactivated state. Here, extensive, fully atomistic molecular dynamics and free-energy simulations of the low-K+ KcsA structure in an explicit lipid bilayer are performed to evaluate the stability of this structure and the selectivity of its binding sites. We find that the low-K+ KcsA structure is stable on the timescale of the molecular dynamics simulations performed, and that ions preferably remain in S1 and S4. In the absence of ions, the selectivity filter evolves toward an asymmetric architecture, as already observed in other computations of the high-K+ structure of KcsA and KirBac. The low-K+ KcsA structure is not permeable by Na+, K+, or Rb+, and the selectivity of its binding sites is different from that of the high-K+ structure.  相似文献   

19.
We show that the activity of an ion channel is correlated with the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid-disordered and the solid-ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine-tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins.  相似文献   

20.
Abstract— Microscopic fluorescence analysis of fura-2-loaded bovine adrenal chromaffin cells demonstrates that ~70% of the cells responded to arachidonic acid in increasing the intracellular Ca2+ concentration. Because this increase was markedly less in the absence of external Ca2+, we examined the effect of arachidonic acid on Ca2+ influx electrophysiologically. Bath application of 10 μM arachidonic acid induced a long-lasting inward current when the cell was clamped at -50 mV. Other fatty acids, such as oleic acid, linoleic acid, eicosatrienoic acid, and eicosa-pentaenoic acid, were all ineffective. The current-voltage relationships suggest that arachidonic acid may activate voltage-insensitive channels. Arachidonic acid (2μM) activated a single-channel current in the inside-out patch, even in the presence of inhibitors of cyclooxygenase and lipoxygenase, possibly suggesting that arachidonic acid could activate channels directly. The onset delay of the inward channel current in the outside-out patch configuration (54.02 ± 63.5 s; mean SD) was significantly shorter than that in the inside-out patch one (197.3 ± 177.7 s). Washout of arachidonic acid decreased the probability of channel openings in the outside-out patch but not in the inside-out one. These results suggest that arachidonic acid activates channels reversibly from outside of the plasma membrane. The unitary conductarce for Ca2+ of arachidonic acid-activated channel was ~17 pS. The arachidonic acid-activated channel was permeable to Ba2+, Ca2+, and Na+ but not to Cl?. The opening probability of the arachidonic acid-activated channel did not depend on membrane potential. These results demonstrate that arachidonic acid activates cation-selective, Ca2+-permeable channels in bovine adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号