首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To address the question of how the murine host responds to a prototypic type 1 cytokine inducer while concurrently undergoing a helminth-induced type 2 cytokine response, C57BL/6 strain animals with patent schistosomiasis mansoni were orally infected with the cystogenic Toxoplasma gondii strain ME49. Schistosoma mansoni infection resulted in a significantly higher mortality rate when mice were subsequently orally infected with ME49, and these animals displayed a defective IFN-gamma and NO response relative to animals infected with T. gondii alone. Plasma levels of TNF-alpha and aspartate transaminase in double-infected mice were greatly elevated relative to mice infected with either parasite alone. Consistent with the latter observation, these animals exhibited severe liver pathology, with regions of coagulative necrosis and hepatocyte vacuolization unapparent in mice carrying either infection alone. Interestingly, mean egg granuloma size was approximately 50% of that in mice with S. mansoni infection alone. The exacerbated liver pathology in coinfected mice did not appear to be a result of uncontrolled tachyzoite replication, because both parasite-specific RT-PCR analysis and immunohistochemical staining demonstrated a low number of tachyzoites in the liver. We hypothesize that mortality in these animals results from the high level of systemic TNF-alpha, which mediates a severe liver pathology culminating in death of the animal.  相似文献   

2.
Type I inflammatory cytokines are essential for immunity to many microbial pathogens, including Toxoplasma gondii. Dendritic cells (DC) are key to initiating type 1 immunity, but neutrophils are also a source of chemokines and cytokines involved in Th1 response ignition. We found that T. gondii triggered neutrophil synthesis of CC chemokine ligand (CCL)3, CCL4, CCL5, and CCL20, chemokines that were strongly chemotactic for immature DC. Moreover, supernatants obtained from parasite-stimulated polymorphonuclear leukocytes induced DC IL-12(p40) and TNF-alpha production. Parasite-triggered neutrophils also released factors that induced DC CD40 and CD86 up-regulation, and this response was dependent upon parasite-triggered neutrophil TNF-alpha production. In vivo evidence that polymorphonuclear leukocytes exert an important influence on DC activation was obtained by examining splenic DC cytokine production following infection of neutrophil-depleted mice. These animals displayed severely curtailed splenic DC IL-12 and TNF-alpha production, as revealed by ex vivo flow cytometric analysis and in vitro culture assay. Our results reveal a previously unrecognized regulatory role for neutrophils in DC function during microbial infection, and suggest that cross-talk between these cell populations is an important component of the innate immune response to infection.  相似文献   

3.
Prion diseases have a significant inflammatory component. Glia activation, which is associated with increased production of cytokines and chemokines, may play an important role in disease development. Among the chemokines upregulated highly and early upregulated during scrapie infections are ligands of CXCR3. To gain more insight into the role of CXCR3 in a prion model, CXCR3-deficient (CXCR3−/−) mice were infected intracerebrally with scrapie strain 139A and characterized in comparison to similarly infected wild-type controls. CXCR3−/− mice showed significantly prolonged survival times of up to 30 days on average. Surprisingly, however, they displayed accelerated accumulation of misfolded proteinase K-resistant prion protein PrPSc and 20 times higher infectious prion titers than wild-type mice at the asymptomatic stage of the disease, indicating that these PrP isoforms may not be critical determinants of survival times. As demonstrated by immunohistochemistry, Western blotting, and gene expression analysis, CXCR3-deficient animals develop an excessive astrocytosis. However, microglia activation is reduced. Quantitative analysis of gliosis-associated gene expression alterations demonstrated reduced mRNA levels for a number of proinflammatory factors in CXCR3−/− compared to wild-type mice, indicating a weaker inflammatory response in the knockout mice. Taken together, this murine prion model identifies CXCR3 as disease-modifying host factor and indicates that inflammatory glial responses may act in concert with PrPSc in disease development. Moreover, the results indicate that targeting CXCR3 for treatment of prion infections could prolong survival times, but the results also raise the concern that impairment of microglial migration by ablation or inhibition of CXCR3 could result in increased accumulation of misfolded PrPSc.  相似文献   

4.
Ocular infection with HSV results in a blinding immunoinflammatory lesion known as herpetic stromal keratitis (HSK). Early preclinical events include inflammatory cell, mainly neutrophils, infiltration of the stroma, and neovascularization. To further evaluate the role of neutrophils in pathogenesis, HSV infection was compared in BALB/c and mice of the same background, but lacking CXCR2, the receptor for chemokines involved in neutrophil recruitment. Our results show clear differences in the outcome of ocular HSV infection in CXCR2-/- compared with control BALB/c mice. Thus, CXCR2-/- animals had minimal PMN influx during the first 7 days postinfection, and this correlated with a longer duration of virus infection in the eye compared with BALB/c mice. The CXCR2-/- mice were also more susceptible to HSV-induced lesions and developed HSK upon exposure to a dose of HSV that was minimally pathogenic to BALB/c mice. The basis for the greater HSK lesion susceptibility of CXCR2-/- mice was associated with an elevated IL-6 response, which appeared in turn to induce the angiogenic factor, vascular endothelial growth factor. Our results serve to further demonstrate the critical role of angiogenesis in the pathogenesis of ocular lesions.  相似文献   

5.
Invasive pulmonary aspergillosis is a devastating complication of immunosuppression, which occurs in association with neutrophil dysfunction or deficiency. ELR+ CXC chemokines are a subfamily of chemokines that play a critical role in neutrophil chemotaxis and activation both in vitro and in vivo. We hypothesized that interaction of these ligands with CXC chemokine receptor-2 (CXCR2), their sole murine receptor, is a major component of neutrophil-dependent pulmonary host defense against Aspergillus fumigatus. In immunocompetent animals, neutrophils were recruited to the lung in response to intratracheally administered A. fumigatus conidia. In a model of transient in vivo depletion of neutrophils, animals developed invasive pulmonary aspergillosis, associated with delayed influx of neutrophils into the lung. In both normal and neutrophil-depleted animals, the ELR+ CXC chemokines MIP-2 and KC were induced in response to intratracheal administration of conidia. Ab-mediated neutralization of the common ELR+ CXC chemokine receptor, CXCR2, resulted in development of invasive disease indistinguishable from the disease in neutrophil-depleted animals, while control animals were highly resistant to the development of infection. CXCR2 neutralization was associated with reduced lung neutrophil influx and resulted in a marked increase in mortality compared with controls. In contrast, animals with constitutive lung-specific transgenic expression of KC were resistant to the organism, with reduced mortality and lower lung burden of fungus. We conclude that CXCR2 ligands are essential mediators of host defense against A. fumigatus, and may be important targets in devising future therapeutic strategies in this disease.  相似文献   

6.
Severe inflammation and mucus overproduction are partially responsible for respiratory syncytial virus (RSV)-induced disease in infants. Using a murine model, we characterized the virally induced chemokine receptors responsible for mediating the pathophysiological response to RSV infection, we found that CXCR2 mRNA was induced at 4 days after RSV infection. Immunohistochemical staining demonstrated that CXCR2 protein was expressed on alveolar macrophages. Immunoneutralization of CXCR2 resulted in decreased airway hyperreactivity relative to the RSV-infected controls. In addition, there was decreased mucus in the bronchoalveolar lavage fluid, decreased periodic-acid Schiff staining, and significantly less mucus-associated gob-5 mRNA and protein in anti-CXCR2-treated mice. The effects of anti-CXCR2 treatment were not a result of differences in viral clearance or neutrophil influx, as these parameters were comparable in both groups of animals. To confirm our immunoneutralization studies, we performed experiments in CXCR2(-/-) mice. Results in CXCR2(-/-) mice recapitulated results from our immunoneutralization studies. However, CXCR2(-/-) mice also showed a statistically significant decrease in muc5ac, relative to RSV-infected wild-type animals. Thus, CXCR2 may be a relevant target in the pathogenesis of RSV bronchiolitis, since it contributes to mucus production and airway hyperreactivity in our model of RSV infection.  相似文献   

7.
Survival from murine pulmonary nocardiosis is highly dependent on CXC chemokine receptor-2 (CXCR2) ligand-mediated neutrophil chemotaxis and subsequent clearance of the infectious agent Nocardia asteroides. Intratracheal inoculation of N. asteroides rapidly up-regulated the CXC chemokines macrophage inflammatory protein-2 (MIP-2) and KC within 24 h, with levels remaining elevated through day 3 before returning to near baseline levels by day 7. Coinciding with elevated MIP-2 and KC were the rapid recruitment of neutrophils and clearance of the organism. Anti-Ly-6G Ab-mediated neutrophil depletion before bacterial challenge resulted in strikingly increased mortality to N. asteroides infection. The relative contribution of MIP-2 in neutrophil recruitment was examined by anti-MIP-2 Ab treatment before nocardial infection. MIP-2 neutralization had no detrimental effects on survival, neutrophil recruitment, or bacterial clearance, suggesting the usage of additional or alternative CXCR2-binding ligands. The importance of the CXC family of chemokines was determined by the administration of an anti-CXCR2 Ab capable of blocking ligand binding in vivo. Anti-CXCR2 treatment greatly increased mortality by preventing neutrophil migration into the lung. Paralleling this impaired neutrophil recruitment was a 100-fold increase in lung bacterial burden. Combined, these observations indicate a critical role for neutrophils and CXC chemokines during nocardial pneumonia. These data directly link CXCR2 ligands and neutrophil recruitment and lend further support to the concept of CXC chemokine redundancy. For infections highly dependent on neutrophils, such as nocardial pneumonia, this is of critical importance.  相似文献   

8.
Neutrophil migration across infected mucosal surfaces is chemokine dependent, but the role of chemokine receptors has not been investigated. In this study, chemokine receptors were shown to be expressed by epithelial cells lining the urinary tract, and to play an essential role for neutrophil migration across the mucosal barrier. Uroepithelial CXCR1 and CXCR2 expression was detected in human urinary tract biopsies, and in vitro infection of human uroepithelial cell lines caused a dramatic increase in both receptors. As a consequence, there was higher binding of IL-8 to the cells and the IL-8-dependent neutrophil migration across the infected epithelial cell layers was enhanced. Abs to IL-8 or to the CXCR1 receptor inhibited this increase by 60% (p<0.004), but anti-CXCR2 Abs had no effect, suggesting that CXCR1 was the more essential receptor in this process. Similar observations were made in the mouse urinary tract, where experimental infection stimulated epithelial expression of the murine IL-8 receptor, followed by a rapid flux of neutrophils into the lumen. IL-8 receptor knockout mice, in contrast, failed to express the receptor, their neutrophils were unable to cross the epithelial barrier, and accumulated in massive numbers in the tissues. These results demonstrate that epithelial cells express CXC receptors and that infection increases receptor expression. Furthermore, we show that CXCR1 is required for neutrophil migration across infected epithelial cell layers in vitro, and that the murine IL-8 receptor is needed for neutrophils to cross the infected mucosa of the urinary tract in vivo.  相似文献   

9.
The chemokine IP-10 (CXCL10) and its cellular receptor CXCR3 are upregulated in the lung during murine gammaherpesvirus 68 (MHV-68) infection. In order to determine the role of the CXCR3 chemokine receptor in the immune response to MHV-68, CXCR3-/- mice were infected with the virus. CXCR3-/- mice showed delayed clearance of replicating MHV-68 from the lungs. This correlated with delayed T-cell recruitment to the lungs and reduced cytolytic activity prior to viral clearance. Splenomegaly and the numbers of latently infected cells per spleen were transiently increased. However, CXCR3-/- mice showed normal virus-specific antibody titers and effective long-term control of MHV-68 infection.  相似文献   

10.
The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker. Neutrophils treated with Staphopain A are unresponsive to activation by all unique CXCR2 chemokines due to cleavage of the N-terminal domain, which can be neutralized by specific protease inhibitors. Moreover, Staphopain A inhibits neutrophil migration towards CXCR2 chemokines. By comparing a methicillin-resistant S. aureus (MRSA) strain with an isogenic Staphopain A mutant, we demonstrate that Staphopain A is the only secreted protease with activity towards CXCR2. Although the inability to cleave murine CXCR2 limits in-vivo studies, our data indicate that Staphopain A is an important immunomodulatory protein that blocks neutrophil recruitment by specific cleavage of the N-terminal domain of human CXCR2.  相似文献   

11.
Previous studies have shown that mice infected i.v. with 6 X 10(5) yeast phase Histoplasma capsulatum (Hc) develop suppressed immune responses during weeks 1 to 4 of infection but that by weeks 8 to 12 of infection these responses return to normal. In this study total and differential cell counts showed that as early as the third day of infection there was a marked reduction in the number of lymphocytes recovered from the peripheral blood, bone marrow, and thymus of infected animals. Concomitantly, there was an increase in the number of splenic lymphocytes. By day 28 both the total and differential cell counts were similar in both infected and normal animals. Flow microfluorometric (FMF) studies comparing the Thy-1.2, Lyt-1, Lyt-2, and surface immunoglobulin (slg) phenotypes of lymphocytes from normal and infected mice were performed. Between days 5 and 7 the thymocytes from infected mice displayed a higher relative fluorescence intensity (RFI) of the Thy-1.2 marker than normal thymocytes, whereas at day 10, the RFI was less than that of normal thymic lymphocytes. Between days 7 and 10 of infection the RFI of the Lyt-2 marker was less on thymocytes from Hc-infected mice; however, there was no change in the Lyt-1 marker. Examination of these lymphocyte markers in blood, spleen, and mesenteric lymph nodes showed that there were decreases in the RFI of both the Thy-1.2 and Lyt-2 between days 5 and 10 of infection. No changes were observed in the Lyt-1 or slg markers. By day 28 there were no differences between the normal and infected mice with respect to any surface marker in any of the organs studied. In other experiments, the effect of adrenalectomy before infection on these surface markers was studied. Absolute numbers of Thy-1.2+, Lyt-1+, and Lyt-2+ cells were significantly increased in the spleen and significantly decreased in the thymus and peripheral blood of infected mice relative to normal controls. These studies suggest that there is a migration of cells from the thymus, blood, and bone marrow to the spleens of mice with disseminated Hc infection.  相似文献   

12.
Alpha-naphthylisothiocyanate (ANIT) is a hepatotoxin that causes severe neutrophilic inflammation around portal tracts and bile ducts. The chemotactic signals that provoke this inflammatory response are unknown. In this study, we addressed the possibility that ANIT upregulates CXC chemokines in the liver and that these compounds mediate hepatic inflammation and tissue injury after ANIT treatment. Mice treated with a single dose of ANIT (50 mg/kg) exhibited rapid hepatic induction of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 derived primarily from hepatocytes, with no apparent contribution by biliary cells. In ANIT-treated mice, the induction of MIP-2 coincided with an influx of neutrophils to portal zones; this hepatic neutrophil recruitment was suppressed by 50% in mice that lack the receptor for MIP-2 (CXCR2(-/-)). Interestingly, despite their markedly reduced degree of hepatic inflammation, CXCR2(-/-) mice displayed just as much hepatocellular injury and cholestasis after ANIT treatment as wild-type mice. Moreover, after long-term exposure, ANIT CXCR2(-/-) mice developed liver fibrosis that was indistinguishable from that in wild-type mice. In summary, our data show that CXC chemokines are responsible for some of the hepatic inflammation that occurs in response to ANIT but that these compounds are not essential to the pathogenesis of either acute or chronic ANIT hepatotoxicity.  相似文献   

13.
TNF is critical for immunity against Mycobacterium tuberculosis infection; however, the relative contributions of the soluble and transmembrane forms of TNF in this immunity are unknown. Using memTNF mice, which express only the transmembrane form of TNF, we have addressed this question. Wild-type (WT), TNF-/-, and transmembrane TNF (memTNF) mice were infected with M. tuberculosis by aerosol. TNF-/- mice developed overwhelming infection with extensive pulmonary necrosis and died after only 33 days. memTNF mice, like WT mice, contained bacterial growth for over 16 wk, developed an Ag-specific T cell response, and initially displayed compact granulomas, comprised of both lymphocytes and macrophages. Expression of mRNA for the chemokines CXCL10, CCL3, CCL5, and CCL7 was comparable in both WT and memTNF mice. As the infection progressed, however, the pulmonary lesions in memTNF mice became larger and more diffuse, with increased neutrophil accumulation and necrosis. This was accompanied by increased influx of activated memory T cells into the lungs of memTNF mice. Eventually, these mice succumbed to infection with a mean time to death of 170 days. The expression of memTNF on T cells is functionally important because the transfer of T cells from memTNF, but not TNF-/- mice, into either RAG-/- or TNF-/- mice conferred the same survival advantage on the M. tuberculosis-infected recipient mice, as the transfer of WT T cells. Therefore, memTNF, in the absence of soluble TNF, is sufficient to control acute, but not chronic, M. tuberculosis infection, in part through its expression on T cells.  相似文献   

14.
Immunoglobulin in cerebral spinal fluid and antibody secreting cells (ASC) within the central nervous system (CNS) parenchyma are common hallmarks of microbial infections and autoimmune disorders. However, the signals directing ASC migration into the inflamed CNS are poorly characterized. This study demonstrates that CXCR3 mediates CNS accumulation of ASC during neurotropic coronavirus-induced encephalomyelitis. Expansion of CXCR3-expressing ASC in draining lymph nodes prior to accumulation within the CNS was consistent with their recruitment by sustained expression of CXCR3 ligands during viral persistence. Both total and virus-specific ASC were reduced greater than 80% in the CNS of infected CXCR3(-/-) mice. Similar T cell CNS recruitment and local T cell-dependent antiviral activity further indicated that the ASC migration defect was T cell independent. Furthermore, in contrast to the reduction of ASC in the CNS, neither virus-specific ASC trafficking to bone marrow nor antiviral serum antibody was reduced relative to levels in control mice. Impaired ASC recruitment into the CNS of infected CXCR3(-/-) mice coincided with elevated levels of persisting viral RNA, sustained infectious virus, increased clinical disease, and mortality. These results demonstrate that CXCR3 ligands are indispensable for recruitment of activated ASC into the inflamed CNS and highlight their local protective role during persistent infection.  相似文献   

15.
IL-8 is a major human neutrophil chemoattractant at mucosal infection sites. This study examined the C-X-C chemokine response to mucosal infection, and, specifically, the role of macrophage inflammatory protein (MIP)-2, one of the mouse IL-8 equivalents, for neutrophil-epithelial interactions. Following intravesical Escherichia coli infection, several C-X-C chemokines were secreted into the urine, but only MIP-2 concentrations correlated to neutrophil numbers. Tissue quantitation demonstrated that kidney MIP-2 production was triggered by infection, and immunohistochemistry identified the kidney epithelium as a main source of MIP-2. Treatment with anti-MIP-2 Ab reduced the urine neutrophil numbers, but the mice had normal tissue neutrophil levels. By immunohistochemistry, the neutrophils were found in aggregates under the pelvic epithelium, but in control mice the neutrophils crossed the urothelium into the urine. The results demonstrate that different chemokines direct neutrophil migration from the bloodstream to the lamina propria and across the epithelium and that MIP-2 serves the latter function. These findings suggest that neutrophils cross epithelial cell barriers in a highly regulated manner in response to chemokines elaborated at this site. This is yet another mechanism that defines the mucosal compartment and differentiates the local from the systemic host response.  相似文献   

16.
17.
Neutrophils are well known to rapidly migrate to foci of infection, where they exert microbicidal functions. We sought to determine whether neutrophils responding to in vivo infection with the protozoan pathogen Toxoplasma gondii were capable of IL-12 production as suggested by recent in vitro studies. Intraperitoneal infection induced a neutrophil influx by 4 h, accompanied by ex vivo IL-12 p40 and p70 release. Approximately 85% of the neutrophils displayed intracellular stores of IL-12, as determined by flow cytometry and confocal fluorescence microscopy. Neutrophils from IFN-gamma knockout mice also expressed IL-12, ruling out an IFN-gamma-priming requirement. Neither infected nor uninfected peritoneal macrophages displayed intracellular IL-12, but these cells were strongly IL-10(+). Infection per se was unnecessary for IL-12 production because peritoneal and peripheral blood neutrophils from uninfected animals contained IL-12(+) populations. Expression of the granulocyte maturation marker Gr-1 (Ly-6G) was correlated with IL-12 production. Mice depleted of their granulocytes by mAb administration at the time of infection had decreased serum levels of IL-12 p40. These results suggest a model in which neutrophils with prestored IL-12 are rapidly mobilized to an infection site where they are triggered by the parasite to release cytokine. Our findings place neutrophils prominently in the cascade of early events leading to IL-12-dependent immunity to T. gondii.  相似文献   

18.
Neutrophil recruitment via CXCR2 is required for innate and adaptive protective immunity to the larvae of Strongyloides stercoralis in mice. The goal of the present study was to determine the mechanism of CXCR2-mediated neutrophil recruitment to S. stercoralis. Mice deficient in the receptor for IL-17A and IL-17F, upstream mediators of CXCR2 ligand production, were infected with S. stercoralis larvae; there was no difference in larval survival, neutrophil recruitment, or production of CXCR2 ligands compared with wild type mice. In vivo and in vitro stimulation of neutrophils with S. stercoralis soluble extract resulted in significant neutrophil recruitment. In vitro assays demonstrated that the recruitment functioned through both chemokinesis and chemotaxis, was specific for CXCR2, and was a G protein-coupled response involving tyrosine kinase and PI3K. Finally, neutrophil stimulation with S. stercoralis soluble extract induced release of the CXCR2 ligands MIP-2 and KC from neutrophils, thereby potentially enhancing neutrophil recruitment.  相似文献   

19.
Ozone (O(3)), a common air pollutant, induces airway inflammation and airway hyperresponsiveness. In mice, the neutrophil chemokines KC and macrophage inflammatory protein-2 (MIP-2) are expressed in the lungs following O(3) exposure. The purpose of this study was to determine whether CXCR2, the receptor for these chemokines, is essential to O(3)-induced neutrophil recruitment, injury to lungs, and increases in respiratory system responsiveness to methacholine (MCh). O(3) exposure (1 ppm for 3 h) increased the number of neutrophils in the bronchoalveolar lavage fluid (BALF) of wild-type (BALB/c) and CXCR2-deficient mice. However, CXCR2-deficient mice had significantly fewer emigrated neutrophils than did wild-type mice. The numbers of neutrophils in the blood and concentrations of BALF KC and MIP-2 did not differ between genotypes. Together, these data suggest CXCR2 is essential for maximal chemokine-directed migration of neutrophils to the air spaces. In wild-type mice, O(3) exposure increased BALF epithelial cell numbers and total protein levels, two indirect measures of lung injury. In contrast, in CXCR2-deficient mice, the number of BALF epithelial cells was not increased by O(3) exposure. Responses to inhaled MCh were measured by whole body plethysmography using enhanced pause as the outcome indicator. O(3) exposure increased responses to inhaled MCh in both wild-type and CXCR2-deficient mice 3 h after O(3) exposure. However, at 24 h after exposure, responses to inhaled MCh were elevated in wild-type but not CXCR2-deficient mice. These results indicate CXCR2 is essential for maximal neutrophil recruitment, epithelial cell sloughing, and persistent increases in MCh responsiveness after an acute O(3) exposure.  相似文献   

20.
Chemokines are critical for the recruitment of effector immune cells to sites of infection. Mice lacking the chemokine receptor CCR1 have defects in neutrophil trafficking and proliferation. In the present study, we tested the susceptibility of CCR1 knockout mice to infection with the obligate intracellular protozoan parasite Toxoplasma gondii. In comparison with parental wild-type mice, CCR1(-/-) mice exhibited dramatically increased mortality to T. gondii in association with an increased tissue parasite load. No differences were observed in Ag-specific T cell proliferation or in cytokine responses between mutant and wild-type mice. However, the influx of PMNs to the peripheral blood and to the liver were reduced in CCR1(-/-) mice during early infection. Our results suggest that CCR1-dependent migration of neutrophils to the blood and tissues may have a significant impact in controlling parasite replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号