首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogeneous nitrate reductase (EC 1.6.6.2) from Monoraphidium braunii was obtained by means of affinity chromatography in blue-Sepharose and gel filtration. After electrophoresis in polyacrylamide, gel slices containing pure nitrate reductase were disrupted and injected into previously unimmunized rabbits. The antiserum produced after several weeks was found to inhibit the different activities of nitrate reductase to a similar degree. Monospecificity of the antiserum was demonstrated by Ouchterlony double diffusion and crossed immunoelectrophoresis. The antibodies were purified by immunoabsorption to Sepharose-bound nitrate reductase.

The intracellular location of nitrate reductase in green algae was examined by applying an immunocytochemical method to M. braunii cells. Ultrathin frozen sections were first treated with immunopurified anti-nitrate reductase monospecific antibodies, followed by incubation with colloidal gold-labeled goat antirabbit immunoglobulin G as a marker. The enzyme was specifically located in the pyrenoid region of the chloroplast.

  相似文献   

2.
NADH:nitrate reductase (EC 1.6.6.1) and NAD(P)H:nitrate reductase (EC 1.6.6.2) were purified from wild-type soybean (Glycine max [L.] Merr., cv Williams) and nr1-mutant soybean plants. Purification included Blue Sepharose- and hydroxylapatite-column chromatography using acetone powders from fully expanded unifoliolate leaves as the enzyme source.

Two forms of constitutive nitrate reductase were sequentially eluted with NADPH and NADH from Blue Sepharose loaded with extract from wild-type plants grown on urea as sole nitrogen source. The form eluted with NADPH was designated c1NR, and the form eluted with NADH was designated c2NR. Nitrate-grown nr1 mutant soybean plants yielded a NADH:nitrate reductase (designated iNR) when Blue Sepharose columns were eluted with NADH; NADPH failed to elute any NR form from Blue Sepharose loaded with this extract. Both c1NR and c2NR had similar pH optima of 6.5, sedimentation behavior (s20,w of 5.5-6.0), and electrophoretic mobility. However, c1NR was more active with NADPH than with NADH, while c2NR preferred NADH as electron donor. Apparent Michaelis constants for nitrate were 5 millimolar (c1NR) and 0.19 millimolar (c2NR). The iNR from the mutant had a pH optimum of 7.5, s20,w of 7.6, and was less mobile on polyacrylamide gels than c1NR and c2NR. The iNR preferred NADH over NADPH and had an apparent Michaelis constant of 0.13 millimolar for nitrate.

Thus, wild-type soybean contains two forms of constitutive nitrate reductase, both differing in their physical properties from nitrate reductases common in higher plants. The inducible nitrate reductase form present in soybeans, however, appears to be similar to most substrateinduced nitrate reductases found in higher plants.

  相似文献   

3.
Nitrate reductase (NR) from the fungus Neurospora crassa is a complex homodimeric metallo-flavoenzyme, where each protomer contains three distinct domains; the catalytically active terminal molybdopterin cofactor, a central heme-containing domain, and an FAD domain which binds with the natural electron donor NADPH. Here, we demonstrate the catalytic voltammetry of variants of N. crassa NRs on a modified Au electrode with the electrochemically reduced forms of benzyl viologen (BV2+) and anthraquinone sulfonate (AQS?) acting as artificial electron donors. The biopolymer chitosan used to entrap NR on the electrode non-covalently and the enzyme film was both stable and highly active. Electrochemistry was conducted on two distinct forms; one lacking the FAD cofactor and the other lacking both the FAD and heme cofactors. While both enzymes showed catalytic nitrate reductase activity, removal of the heme cofactor resulted in a more significant effect on the rate of nitrate reduction. Electrochemical simulation was carried out to enable kinetic characterisation of both the NR:nitrate and NR:mediator reactions.  相似文献   

4.
Homogeneous squash cotyledon reduced nicotinamide-adenine dinucleotide (NADH):nitrate reductase (NR) was isolated using blue-Sepharose and polyacrylamide gel electrophoresis. Gel slices containing NR were pulverized and injected into a previously unimmunized rabbit. This process was repeated weekly and antiserum to NR was obtained after four weeks. Analysis of the antiserum by Ouchterlony double diffusion using a blue-Sepharose preparation of NR resulted in a single precipitin band while immunoelectrophoresis revealed two minor contaminants. The antiserum was found to inhibit the NR reaction and the partial reactions to different degrees. When the NADH:NR and the reduced methyl viologen:NR activities were inhibited 90% by specifically diluted antiserum, the reduction of cytochrome c was inhibited 50%, and the reduction of ferricyanide was inhibited only 30%. Antiserum was also used to compare the cross reactivities of NR from squash cotyledons, spinach, corn, and soybean leaves, Chlorella vulgaris, and Neurospora crassa. These tests revealed a high degree of similarity between NADH:NR from the squash and spinach, while NADH:NR from corn and soybean and the NAD(P)H:NR from soybean were less closely related to the squash NADH:NR. The green algal (C. vulgaris) NADH:NR and the fungal (N. crassa) NADPH:NR were very low in cross reactivity and are apparently quite different from squash NADH:NR in antigenicity. Antiserum to N. crassa NADPH:NR failed to give a positive Ouchterlony result with higher plant or C. vulgaris NADH:NR, but this antiserum did inhibit the activity of squash NR. Thus, it can be concluded from these immunological comparisons that all seven forms of assimilatory NR studied here have antigenic determinants in common and are probably derived from a common ancestor. Although these assimilatory NR have similar catalytic characteristics, they appear to have diverged to a great degree in their structural features.  相似文献   

5.
Summary Ten nitrate reductase (NR)-deficient mutants have been characterized for their cross-reactivity against specific barley (Hordeum vulgare L.) nitrate reductase antibodies. The rabbit antibodies raised against the purified barley wild type (cv. Steptoe) enzyme quantitatively inactivate nitrate reductase in crude extracts. All nitrate-grown (induced) mutants show positive precipitin reaction against the antiserum by Ouchterlony double diffusion test and all have the ability to neutralize antisera in a NR protection assay. Under induced growth conditions, mutants Az 12, Az 23, Az 29 and Az 30 which have low NR associated catalytic activities also have the lowest level of antigenicity; mutants Az 13, Az 31, Az 33 and Az 34 have intermediate level of both NR associated catalytic activities and antigenicity, while mutants Az 28 and Az 32 have the highest level of both NR associated catalytic activities and antigenicity. Under noninduced growth conditions, all mutants except Az 12 contain detectable but very low levels of NR antigenicity. These results support the concept that these NR-deficient mutants with various levels of NR associated catalytic activities represent different mutation events at the loci coding the NR structural components.Abbreviations NR nitrate reductase - DTT dithiothreitol - FAD flavin adenine dinucleotide - BSA bovine serum albumin - NRCRM nitrate reductase cross-reacting materials Scientific Paper No. 5765. College of Agriculture Research Center, Washington State University, Pullman, Project Nos. 0233 and 0430. Supported in part by National Science Foundation Grant #PCM7807649, and U.S. Department of Agriculture CRGO Grant #7900536  相似文献   

6.
C. Schuster  H. Mohr 《Planta》1990,181(1):125-128
It was found previously that in the mustard (Sinapis alba L.) seedling (Schuster et al. 1989, Planta 177, 74–83) the action of nitrate and phytochrome on the appearance of cytosolic nitrate reductase (NR) is abolished if the plastids are damaged by photooxidation. In the present study this finding has been corroborated by the following results: (i) the appearance and disappearance of NR activity are strictly correlated with the appearance and disappearance of immunoresponsive NR protein; (ii) the appearance of NR correlates with the appearance of translatable NR mRNA; (iii) photodestruction of the plastids strongly reduces the level of NR mRNA. It is concluded that the dependence of the NR level on the state of the plastids can be detected at the level of its mRNA and is not attributable to an inactivation of the enzyme.Abbreviations NR nitrate reductase (EC 1.6.6.1) This research was supported by a grant from the Deutsche Forschungsgemeinschaft. We are greatly indebted to Dr. Ann Oaks (University of Guelph, Ontario, Canada) for the gift of antiserum.  相似文献   

7.
Summary Mutants of E. coli, completely devoid of nitrite reductase activity with glucose or formate as donor were studied. Biochemical analysis indicates that they are simultaneously affected in nitrate reductase, nitrite reductase, fumarate reductase and hydrogenase activities as well as in cytochrome c552 biosynthesis. The use of an antiserum specific for nitrate reductase shows that the nitrate reductase protein is probably missing. A single mutation is responsible for this phenotype: the gene affected, nir R, is located close to tyr R i.e. at 29 min on the chromosomal map.Abbreviations BV Benzyl-Viologen - NTG N-methyl-N-nitro-N-nitrosoguanidine - NR nitrate reductase - NIR nitrite reductase - FR fumarate reductase - HYD hydrogenase - CYT c552 cytochrome c552  相似文献   

8.
A number of approaches have been used to show that a recently isolated selenate-respiring bacterium, Thauera selenatis, is able to synthesize both a selenate reductase (SR) and a nitrate reductase (NR). (i) The pH optimum of the SR was found to be 6.0; that of the NR was 7.0. (ii) The presence of nitrate did not inhibit selenate reduction in selenate-grown cells. (iii) In cell extracts, the highest SR or NR activity was observed in cells grown with the respective electron acceptor. (iv) Mutants that were unable to grow with nitrate as the terminal electron acceptor and lacked NR activity were isolated; these mutants grew normally with selenate and synthesized SR. (v) The SR was found in the periplasmic space of the cell, whereas the NR was present in the cytoplasmic membrane. A hypothetical electron transport system involving the SR is described.  相似文献   

9.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

10.
Two nitrate reductase deficient mutants of soybean (Glycine max [L.] Merr. cv Bragg) were isolated from approximately 10,000 M2 seedlings, using a direct enzymic assay in microtiter plates. Stable inheritance of NR345 and NR328 phenotypes has been demonstrated through to the M5 generation. Both mutants were affected in constitutive nitrate reductase activity. Assayable activities of cNR in nitrate-free grown seedlings was about 3 to 4% of the control for NR345 and 14 to 16% of the control for NR328. Both mutants expressed inducible NR during early plant development and were sensitive to nitrate and urea inhibition of nodulation. These new mutants will allow an extension of the characterization of nitrate reductases and their function in soybean. Preliminary evidence indicates that NR345 is similar to the previously isolated mutant nr1, while NR328 is different.  相似文献   

11.
Nitrate reductase (NR) activity and nitrite reductase (NiR) mRNA levels were monitored in Black Mexican Sweet maize (Zea mays L.) suspension cultures after the addition of nitrate. Maximal induction occurred with 20 millimolar nitrate and within 2 hours. Both NR and NiR mRNA were transiently induced with levels decreasing after the 2 hours despite the continued presence of nitrate in the medium. Neither ammonia nor chlorate prevented the induction of NR. Furthermore, removal of nitrate, followed by its readdition 22 to 48 hours later, did not result in reinduction of activity or message. NR was synthesized de novo, since cycloheximide completely blocked its induction. Cycloheximide had no effect on the induction of NiR mRNA or on the transient nature of its induction. These results are similar to those reported previously for maize seedlings.  相似文献   

12.
Young chicory plants (Cichorium intybus L. var. Witloof) show a tenfold higher nitrate reductase NR activity in roots compared to leaves. Northern analysis revealed, besides the nitrate inducibility of the nitrate reductase gene (nia), a higher level of expression in the roots. By modifying the external nitrate concentration the NR activity in the leaves remained negligible whereas a maximal activity was observed in the roots when grown in the presence of 5 mM nitrate. Surprisingly, variation of the external nitrate concentration induced changes in the spatial regulation of nia within the root. In-situ hybridization mainly localized nia mRNA in the cortical cells of roots grown at low nitrate concentrations (0.2 mM). At high nitrate concentrations (5 mM), nia mRNA was more abundant in the vascular tissues. The root apex revealed a strong signal under both conditions. The isolation and characterization of the NR structural gene from chicory is also presented. Southern blot analysis revealed the presence of a single nia gene per haploid genome of chicory.  相似文献   

13.
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrite uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.Abbreviations EDTA ethylenediaminetetraacetic acid - FAD flavine-adenine dinucleotide - IgG immunoglobulin G - NR nitrate reductase - PM plasma membrane - TX-100 Triton X-100  相似文献   

14.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   

15.
Levels of nitrate reductase (NR) protein in Hansenula anomala and Hansenula wingei were determined using specific antiserum raised against the enzyme from H. anomala. Extracts from nitrate-grown cells contained NR protein, while in those from cells grown on ammonium, glutamine or peptone, no cross-reacting material could be observed. Enzyme activity correlated with the levels of cross-reacting material. When nitrate was used as nitrogen source, NR was always present, even in cultures with ammonium, glutamine or peptone, although in these cases both the levels of activity and protein were lower. NR activity was consistently two to four times higher in cells grown in glucose than in cells grown in ethanol. Nitrate was required for NR induction, and deprivation of nitrate from nitrate-grown cells resulted in a rapid loss of NR activity.  相似文献   

16.
Silene alba cells grown on nitrate, usually develop NADH-nitrate reductase activity only at the beginning of their growth cycle. Immunodiffusion assays, with a specific nitrate reductase antiserum, revealed the presence of cross-reacting material in cells harvested at any time during their culture. Cells grown on ammonium lacked NADH-nitrate reductase activity but contained cross-reacting material. It is suggested that S. alba cells contain an enzymically inactive, antigenic form of nitrate reductase regardless of the nitrogen source.  相似文献   

17.
Supply of 100 μM spermidine (Spd) in the nutrient solution containing 10 mM nitrate as the sole nitrogen source, increased growth of roots and shoots, total nitrogen content andin vivo orin vitro nitrate reductase (NR) activity of leaves of 10-d oldLeucaena leucocephala seedlings. Spd and the cytokinins benzyladenine or kinetin also increased growth, total nitrogen andin vivo NR activity of isolated cotyledons. The synergistic effects of nitrate, kinetin and Spd in increasing NR activity, indicate that the Spd acted at different level than the nitrate or cytokinin.  相似文献   

18.
The relationship between the plasma membrane bound NAD(P)H-nitratereductase (NR) and a plasma membrane (PM)-bound peroxidase wasinvestigated using highly purified PM vesicles isolated fromcorn roots. The PM-bound NR activity was strongly enhanced byMnCl2 and SHAM, which stimulated peroxidase activity. Sinceboth activities, the NAD(P)H-dependent NR and the peroxidasecompete for NAD(P)H as electron donor, we propose a model inwhich a product of peroxidation is able to offer electrons tothe nitrate reductase in a more reactive form with respect toNAD(P)H.Our hypothesis was confirmed by experiments in which the effectsof inhibitors of peroxidative reactions, catalase, superoxidedismutase, and ascorbate on the PM-bound NR were studied. Resultsindicate that the putative electron donor for nitrate reductioncould be a radicalic species, possibly NAD. Furthermore, sincecytochrome c decreased the activity of the plasma membrane-boundNAD(P)Hdependent NR, cytochrome b557 might be the site of theenzyme accepting electrons from NAD. Our results indicate that the PM environment of the NR may beinvolved in the extent of the membrane associated nitrate reductionand that redox enzymes at the PM, the NAD(P)H-NR and a peroxidase-likeNADH-oxidase, can interact. Key words: Plasma membrane-bound nitrate reductase, peroxidase, Zea mays  相似文献   

19.
Antiserum was prepared against nitrate reductase (EC 1.6.6.1) purified to homogeneity from Chlorella vulgaris Beijerinck. Both crude antiserum and anti-nitrate reductase antibodies prepared from it were used as re-agents to study the synthesis of nitrate reductase. Cell extracts from cultures which were grown with ammonia salts as the sole source of nitrogen contained almost no active enzyme. These extracts did contain material which binds to antibody and is thus immunologically related to purified nitrate reductase. The presence of this cross reacting material in cell extracts was detected by the ability of these extracts to (a) lower the titer of antisera; (b) form a biphasic precipitin curve with purified antibody; and (c) increase the peak height of a standard amount of purified nitrate reductase in rocket immunoelectrophoresis assay. These results suggest that ammonia-grown cells contain nitrate reductase precursor protein.  相似文献   

20.
The herbicide chlorate has been used extensively to isolate mutants that are defective in nitrate reduction. Chlorate is a substrate for the enzyme nitrate reductase (NR), which reduces chlorate to the toxic chlorite. Because NR is a substrate (NO3)-inducible enzyme, we investigated the possibility that chlorate may also act as an inducer. Irrigation of ammonia-grown Arabidopsis plants with chlorate leads to an increase in NR mRNA in the leaves. No such increase was observed for nitrite reductase mRNA following chlorate treatment; thus, the effect seems to be specific to NR. The increase in NR mRNA did not depend on the presence of wild-type levels of NR activity or molybdenum-cofactor, as a molybdenum-cofactor mutant with low levels of NR activity displayed the same increase in NR mRNA following chlorate treatment. Even though NR mRNA levels were found to increase after chlorate treatment, no increase in NR protein was detected and the level of NR activity dropped. The lack of increase in NR protein was not due to inactivation of the cells' translational machinery, as pulse labeling experiments demonstrated that total protein synthesis was unaffected by the chlorate treatment during the time course of the experiment. Chlorate-treated plants still retain the capacity to make functional NR because NR activity could be restored by irrigating the chlorate-treated plants with nitrate. The low levels of NR protein and activity may be due to inactivation of NR by chlorite, leading to rapid degradation of the enzyme. Thus, chlorate treatment stimulates NR gene expression in Arabidopsis that is manifested only at the mRNA level and not at the protein or activity level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号