共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
J B Field G Bloom M E Kerins R Chayoth U Zor 《The Journal of biological chemistry》1975,250(13):4903-4910
Protein kinase activity in homogenates of control thyroid slices and those incubated with thyroid-stimulating hormone (TSH) and prostaglandin EI was assayed and correlated with changes in cyclic adenosine 3':5'-monophosphate (cAMP) concentrations and binding of [3H]cAMP. Both TSH and prostaglandin E1 (25 mug/ml) increased protein kinase activity and the activity ratio (expressed as activity - cAMP to activity plus cAMP). It is unlikely that such activation reflects effects of the increased cAMP liberated at the time of homogenization. Hormone-induced activation of protein kinase persisted even after the homogenate had been diluted so that its cAMP concentration would be insufficient to achieve maximal activation of the enzyme. In contrast to the previous results of J. D. Corbin, T. R. Soderling, and C. R. Park ((1973 J. Biol. Chem. 248, 1813) using adipose tissue, homogenization of thyroid tissue in 0.5 M NaCl and chromatography using Sephadex G-100 did not seem to stabilize dissociation of protein kinase into its receptor and catalytic subunits. However, increasing amounts of NaCl in the homogenizing buffer were associated with an increase in the cAMP independence of enzyme activity. Dilution of the homogenate did not change the protein kinase activity ratio whether the homogenizing buffer contained NcCl or not. Increasing concentrations of NaF inhibited protein kinase activity. Within 1 to 3 min of incubation of thyroid slices with TSH, protein kinase activity and the activity ratio were increased significantly. This correlated quite well with increased cAMP concentrations in the slices and inhibition of [3H]cAMP binding to the homogenates. Maximal activation of the enzyme was achieved by 10 min which corresponds to the time of maximal effect on cAMP concentrations. Activation of protein kinase was achieved by 0.125 milliunit/ml of TSH and maximal effects with 0.5 to 1.25 milliunits/ml. These amounts agree well with those required for other effects of TSH. Although larger amounts of TSH produced even greater increases in cAMP concentrations this was not always associated with augmented inhibition of [3H]cAMP binding. These results are compatible with the concept that the TSH-mediated increase in cAMP is associated with activation of protein kinase in the intact cell. They also suggest that not all of the intracellular cAMP is available for activation of protein kinase. 相似文献
5.
6.
7.
Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor
下载免费PDF全文

The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) controls the expression of HIV-1 viral genes and thus viral propagation and pathology. Numerous host factors participate in the regulation of the LTR promoter, including thyroid hormone (T(3)) receptor (TR). In vitro, TR can bind to the promoter region containing the NF-kappa B and Sp1 binding sites. Using the frog oocyte as a model system for chromatin assembly mimicking that in somatic cells, we demonstrated that TR alone and TR/RXR (9-cis retinoic acid receptor) can bind to the LTR in vivo independently of T(3). Consistent with their ability to bind the LTR, both TR and TR/RXR can regulate LTR activity in vivo. In addition, our analysis of the plasmid minichromosome shows that T(3)-bound TR disrupts the normal nucleosomal array structure. Chromatin immunoprecipitation assays with anti-acetylated-histone antibodies revealed that unliganded TR and TR/RXR reduce the local histone acetylation levels at the HIV-1 LTR while T(3) treatment reverses this reduction. We further demonstrated that unliganded TR recruits corepressors and at least one histone deacetylase. These results suggest that chromatin remodeling, including histone acetylation and chromatin disruption, is important for T(3) regulation of the HIV-1 LTR in vivo. 相似文献
8.
9.
10.
11.
Functional regulation of thyroid hormone receptor variant TR alpha 2 by phosphorylation. 总被引:2,自引:1,他引:2
下载免费PDF全文

The thyroid hormone (T3) receptor (TR) variant TR alpha 2 is abundant in brain but does not bind T3 because of its unique C terminus. The only known function of TR alpha 2, inhibition of TR-dependent transactivation, involves competition for T3 response elements. Paradoxically, in vitro-translated TR alpha 2 bound poorly to these sites. We report here that dephosphorylation of TR alpha 2 restored its DNA binding. Mutation of C-terminal serine residues to alanine (TR alpha 2-SA) was equally effective. The C terminus of TR alpha 2 was phosphorylated in a human cell line, whereas that of TR alpha 2-SA was not. Conversely, TR alpha 2-SA was a much better inhibitor of T3 action than was wild-type TR alpha 2. The dominant negative activity of TR alpha 2-SA was less than stoichiometric with TR concentration, possibly because it was unable to heterodimerize with retinoid X receptor, which enhances the binding of other TRs. Purified casein kinase II as well as a reticulocyte casein kinase II-like activity phosphorylated TR alpha 2 on serines 474 and 475. Mutation of these two residues to alanine was sufficient to restore DNA binding. Thus, DNA binding by TR alpha 2 is regulated by phosphorylation at a site distant from the DNA-binding domain. The increased dominant negative activity of a nonphosphorylatable form of TR alpha 2 suggests that phosphorylation may provide a rapid, T3-independent mechanism for cell-specific modulation of the expression of T3-responsive genes. 相似文献
12.
13.
14.
15.
16.
17.
18.
We have previously shown that 3,5,3'-triiodo-L-thyronine (L-T3) stimulates cell growth and a 4- to 8-fold increase in growth hormone mRNA in GH1 cells. These effects appear to be mediated by a thyroid hormone nuclear receptor with an equilibrium dissociation constant for L-T3 of 0.2 nM and an abundance of about 10,000 receptors per cell nucleus. In this report, we show that L-T3 exerts a pleiotypic effect on GH1 cells to rapidly (within 2 h) stimulate [3H]uridine uptake to a maximal value of 2.5- to 3-fold after 24 h. This results from an increase in the number of functional uridine "transport sites" as shown by studies documenting an increase in the apparent Vmax with no change in the Km, 17 microM. Although the labeling of the cellular uridine pool and pools of all phosphorylated uridine derivatives was increased by L-T3, there was no change in the relative amounts of the individual pools in cells incubated with or without hormone. The intracellular concentration of [3H]uridine was estimated to be similar to that of the medium, suggesting that facilitated transport mediates [3H]uridine uptake. That this increase in [3H]uridine transport was nuclear receptor-mediated is supported by the excellent correspondence of the L-T3 dose-response curve for [3H]uridine uptake and that for L-T3 binding to receptor. Finally, inhibition of protein synthesis by cycloheximide and RNA synthesis by actinomycin D demonstrated that the L-T3 effect required continuing protein and RNA synthesis. These results are consistent with an effect of the L-T3-nuclear receptor complex to increase uridine uptake in GH1 cells by altering the expression of gene(s) essential for the transport process. 相似文献
19.
Kim SW Ho SC Hong SJ Kim KM So EC Christoffolete M Harney JW 《The Journal of biological chemistry》2005,280(15):14545-14555
20.
Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity 总被引:8,自引:0,他引:8
We have located sequences within the rat growth hormone (rGH) promoter region which are required for pituitary cell-type specific responsiveness to T3 (thyroid hormone, 3,5,3'-L-triiodothyronine). Transient transfections with a series of plasmids containing as few as 202 nucleotides upstream of the start site of the rat growth hormone mRNA showed specific induction by T3 in rat pituitary cell lines. Both the magnitude and the kinetics of this response were similar to those of the endogenous rGH gene, showing a strong early induction followed by a decline in T3 effect. Deletion of an additional 19 base pairs (to -183 relative to the start site) eliminated this induction. Plasmids containing sequences up to -237 or -202 showed significant promoter activity but no T3 responsiveness in transfections of mouse fibroblasts or monkey kidney cells. The presence of high affinity nuclear T3 binding proteins was demonstrated in both cell types. These results show that sequences between -183 and -202 are required for pituitary cell specific T3 regulation of the rGH promoter. The lack of T3 responsiveness in non-pituitary cells suggests that such regulation may be mediated by factors present in pituitary cells and absent in other cells. 相似文献