首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Eutrophication has a profound effect on the biological structure and function of shallow lakes, altering the composition and abundance of submerged macrophyte and fish assemblages. Relatively little is known, however, about decadal to centennial‐scale change in these important aspects of shallow lake ecology. 2. Established palaeolimnological inference models are limited to reconstructing a single variable. As macrophyte and zooplanktivorous fish abundance exert dual and interacting controls on cladoceran assemblages a single variable inference model may contain significant error. To obviate this problem, we applied a new cladoceran‐based multivariate regression tree (MRT) model to cladoceran subfossil assemblages from dated cores from a small shallow lake (Felbrigg Lake, U.K.) to assess long‐term change in fish and submerged macrophyte abundance. Plant macrofossil, chironomid and mollusc subfossil assemblages were also analysed to track changes in biological structure and function and to evaluate the inferences of the MRT model. 3. Over the 200+ year period covered by the sediment cores, there was good agreement in the timing and nature of ecological change reflected by the plant macrofossil, mollusc, chironomid and cladoceran data. The sediment sequence was divided into three dated zones: c. 1797–1890, c. 1890–1954 and c. 1954–present. Prior to 1890 plant‐associated mollusc, cladoceran and chironomid assemblages indicated a species‐rich macrophyte community; a scenario confirmed by the plant macrofossil data. From c. 1890 to 1954 macrophyte‐associated species of all three invertebrate groups remained abundant but the proportion of pelagic cladocerans rose. Post‐1954 mollusc and chironomid assemblages changed to sediment associated detrital feeders and the proportion of pelagic cladoceran taxa increased further. 4. The cladoceran‐based MRT model indicated a long period of stability, c. 1790–1927, characterised by abundant submerged macrophytes and zooplanktivorous fish. From c. 1927 to 1980, the MRT model inferred a decline in zooplanktivorous fish density (ZF) but relative stability in August macrophyte abundance. From 1980 to 2000, an increase in zooplanktivorous fish was inferred tallying well with available data on the fish population (since the 1970s), which indicated extirpation of perch in the 1970s and a subsequent increase in the rudd population. The model inferred little change in August macrophyte abundance until post‐c. 1980 at which point it indicated a decline. The surface sediment assemblage was placed in MRT group A, where submerged plants are absent or very rare in late summer in good agreement with current conditions at the site. 5. The MRT model, applied here for the first time, appears to have successfully tracked changes in macrophyte abundance and ZF over the last 200 years at Felbrigg Lake. The inferences agreed with historical observations on the fish community and the supporting palaeolimnological data. Given that multiple structuring forces shape most biological communities, the application of a model capable of allowing for this represents a significant advance in palaeolimnology.  相似文献   

2.
The sediment of Lake Balaton (Hungary) provides important information about the lake’s history, particularly with regard to eutrophication. In this study, we used fossil pigment analysis and subfossil Cladocera remains preserved in a dated sediment core to identify trophic stages from ~250 bc to present. Dates of the most recent eutrophic events are in good agreement with previously published data. In general, the abundance and diversity of the Cladocera community increased with eutrophication and decreased with oligotrophication. The sediments of Lake Balaton were characterised by Chydoridae remains, of which Alona species were the most abundant. Of these, Alona quadrangularis and Alona affinis accounted for 40 and 20% of the total Cladocera remains, respectively. The trophic state of Lake Balaton varied between mesotrophic and eutrophic regimes. Seven different trophic periods were identified in Lake Balaton on the basis of Sedimentary Pigment Degradation Unit (SPDU) content of the sediment. Eutrophic states were (1) from ~250 to ~30 bc, (3) between ~300 and ~590 ad, (5) between 1834 and 1944 and (7) from the 1960s until present. Mesotrophic states were (2) ~30 bc to ~300 ad, (4) 590–1834, (6) 1944–1960s. Discriminant analysis of the cladoceran data confirmed these historic events, except for the short mesotrophic episode between 1944 and 1960. The first stage of eutrophication of Lake Balaton (~250 to ~30 bc) was characterised by extensive macrophyte vegetation, as indicated by the increasing abundance of vegetation-associated Cladocera species (Eurycercus lamellatus, Sida crystallina, Pleuroxus sp.). Intensification of eutrophication was identified since the 1980s, reflected by a high abundance of Bosmina species. The most significant planktivorous fish of Lake Balaton was the Sabre carp (Pelecus cultratus), and when its number decreased, the abundance of Bosmina species increased. This study shows that Cladocera are responsive to trophic state changes, underlining their importance as a tool for the assessment of lake eutrophication.  相似文献   

3.
To elucidate the possibilities of using zooplankton remains in the surface sediment to describe present-days community structure and population dynamics of zooplankton, fish abundance and temperature, we compared contemporary data sampled in the pelagial during summer with the sediment record from the upper 1 cm of the sediment in 135 lakes covering a latitude gradient from Greenland in the north to New Zealand in the south. The abundance of three genera Bosmina, Daphnia and Ceriodaphnia of the total pool of ephippia was significantly related to the total abundance of the same taxa in the pelagic zone. However, in most lakes the abundance of Ceriodaphnia was higher in the sediment than in the water, which may be attributed to the overall preference by this genus for the littoral habitat. Using contemporary data from 27 Danish lakes sampled fortnightly during summer for 10 years, we found substantial inter-annual variations in the abundance of Daphnia spp., Ceriodaphnia spp., B. longirostris and B. coregoni. Yet, the sediment record mimicked the medium level well for most of the lakes, which suggests that the sediment record provides an integrated picture of the pelagic cladoceran community, which otherwise can be obtained only by long-term frequent contemporary sampling for several years. The contribution of Daphnia to the sum of Daphnia and Bosmina ephippia was negatively correlated with the abundance of fish expressed as catch per night in multi-mesh sized gill nets (CPUE). Yet, region-specific differences occurred, which partly could be eliminated by including nutrient state expressed as total phosphorus (TP) in a multiple regression. The average ratio of ephippia to the sum of ephippia and carapaces of Bosmina varied 40-fold between the sampling regions and was significantly negatively related to summer mean air temperature, and for Danish lakes also, albeit weakly, to fish CPUE but not to chlorophyll a. Apparently, temperature is the most important factor determining the ratio of parthenogenetic to ephippia producing specimens of Bosmina. We conclude that the sediment record of cladocerans is a useful indicator of community structure of pelagic cladocerans and the abundance of fish and temperature.  相似文献   

4.
1. This study describes the environmental conditions and cladoceran community structure of 29 Faroese lakes with special focus on elucidating the impact of fish planktivory. In addition, long‐term changes in biological structure of the Faroese Lake Heygsvatn are investigated. 2. Present‐day species richness and community structure of cladocerans were identified from pelagial snapshot samples and from samples of surface sediment (0–1 cm). Multivariate statistical methods were applied to explore cladoceran species distribution relative to measured environmental variables. For Lake Heygsvatn, lake development was inferred by cladoceran‐based paleolimnological investigations of a 14C‐dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small‐sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher in the surface sediment samples than in the snapshot samples. 4. Fish abundance was found to be of only minor importance in shaping cladoceran community and body size structure, presumably because of predominance of the less efficient zooplanktivore brown trout. 5. Canonical correspondence analysis showed maximum lake depth (Zmax) to be the only significant variable in explaining the sedimentary cladoceran species (18 cladoceran taxa, two pelagic, 16 benthic) distribution. Multivariate regression trees revealed benthic taxa to dominate in lakes with Zmax < 4.8 m and pelagic taxa to dominate when Zmax was > 4.8 m. 6. Predictive models to infer Zmax were developed using variance weighted‐averaging procedures. These were subsequently applied to subfossil cladoceran assemblages identified from a 14C‐dated sediment core from Lake Heygsvatn and showed inferred Zmax to correspond well to the present‐day lake depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication.  相似文献   

5.
6.
7.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

8.
1. We studied the role of zooplankton in biomanipulation and the subsequent recovery phase in the Enonselkä basin of Lake Vesijärvi, using subfossil cladocerans in annually laminated sediment. Measures to restore the Enonselkä basin included reduction in external nutrient loading and mass removal of plankti‐ and benthivorous fish. Water clarity increased and the lake changed from a eutrophic to a mesotrophic state. However, some signs of increased turbidity were observed after 5–10 years of successful recovery. 2. Annual laminae in a freeze core sample were identified and sliced, based on the seasonal succession of diatoms. Cladoceran remains and rotifer eggs were counted, and Daphnia ephippia and Eubosmina and Bosmina ephippia and carapaces were measured. Annual changes in pelagic species composition were studied with principal component analysis. Individual species abundance, size measurements and various cladoceran‐based indices or ratios (commonly used to reconstruct changes in trophic state and fish predation) were tested for change between four distinct periods: I (1985–1988) dense fish stocks, poor water quality; II (1989–1992) fish removal; III (1993–1997) low fish density, improved water quality; IV (1998–2002) slightly increased fish density and poorer water quality. 3. After the removal of fish, the mean size of Daphnia ephippia and Eubosmina crassicornis ephippia and carapaces increased significantly. In contrast, the percentage of Daphnia did not increase. When based on ephippia, the ratio Daphnia/(Daphnia + E. crassicornis) increased, but the interpretation was obscured by the tolerance of fish predation by small Daphnia and by the fact that bosminids were the preferred food of roach. Moreover, ephippial production by E. crassicornis decreased in recent years. 4. The abundance of Diaphanosoma brachyurum and Limnosida frontosa increased significantly after the fish population was reduced, while that of Ceriodaphnia and rotifers decreased. 5. The expanding littoral vegetation along with improved water clarity was clearly reflected in the concentration of littoral species in the deep sediment core. The species diversity index for the entire subfossil community also increased. 6. The period of faltering recovery was characterised by greater interannual variability and an increased percentage of rotifers. Nevertheless, the mean sizes of Daphnia ephippia and E. crassicornis ephippia and carapaces indicated a low density of fish. The deteriorating water quality was apparently related to multiple stressors in the catchment after rehabilitation, such as intensified lakeshore building, as well as to exceptional weather conditions, challenging the management methods in use.  相似文献   

9.
1. As quantitative information on historical changes in fish community structure is difficult to obtain directly from fish remains in lake sediments, transfer function for planktivorous fish abundance has been developed based on zooplankton remains in surface sediment (upper 1 cm). The transfer function was derived using weighted average regression and calibration against contemporary data on planktivorous fish catch per unit effort (PF-CPUE) in multiple mesh size gill nets. Zooplankton remains were chosen because zooplankton community structure in lakes is highly sensitive to changes in fish predation pressure. The calibration data set consisted of thirty lakes differing in PF-CPUE (range 18–369 fish net–1), epilimnion total phosphorus (range 0.025–1.28 mg P l–1) and submerged macrophyte coverage (0–57%). 2. Correlation of log-transformed PF-CPUE, total phosphorus and submerged macrophyte coverage v the percentage abundance in the sediment of the dominant cladocerans and rotifers revealed that the typical pelagic species correlated most highly to PF-CPUE, while the littoral species correlated most highly to submerged macrophyte coverage. Consequently, only pelagic species were taken into consideration when establishing the fish transfer function. 3. Canonical correspondence analysis (CCA) revealed that the pelagic zooplankton assemblage was highly significantly related to PF-CPUE (axis 1), whereas the influence of total phosphorus and submerged macrophyte coverage was insignificant. Predicted PF-CPUE based on weighted average regression without (WA) and with (WA(tol)) downweighting of zooplankton species tolerance correlated significantly with the observed values (r2 = 0.64 and 0.60 and RMSE = 0.54 and 0.56, respectively). A marginally better relationship (r2 = 0.67) was obtained using WA maximum likelihood estimated optima and tolerance. 4. It is now possible, quantitatively, to reconstruct the historical development in planktivorous fish abundance based on zooplankton fossil records. As good relationships exist between contemporary PF-CPUE data and indicators such as the zooplankton/phytoplankton biomass ratio, Secchi depth and the maximum depth distribution of submerged macrophytes, it is now also possible to derive information on past changes in lake water quality and trophic structure. It will probably prove possible further to improve the transfer function by including other invertebrate remains, e.g. chironomids, Chaoborus, snails, etc., and its scope could be widened by including deeper lakes, more oligotrophic lakes, more acidic lakes and lakes with extensive submerged macrophyte coverage (in the latter case to enable use of the information in the fossil record on plant-associated cladocerans).  相似文献   

10.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

11.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

12.
13.
Among the topics covered by Hutchinson’s Santa Rosalia article, the question of the shortening and lengthening of food webs occupies a central role. As Hutchinson realized, at the time scales of ecological studies, the impact of invader species on established food webs is the fastest shortcut to the shortening or lengthening of the food webs. The construction of thousands of dams in Spain during the last century has offered ecologists a good opportunity to test the effects of invader fish species on the plankton dynamics of these systems. In this article, a series of data related to the food web structure of Sau Reservoir is analyzed for the period 1997–2005. Parameters such as Secchi depth and chlorophyll concentration, as well as abundance and size structure of zooplankton, have been matched to the zooplankton dynamics in the reservoir. Most of the changes detected within this period are attributed to the introduction of zooplanktivorous fish in the reservoir. The Secchi depth measurements have showed a progressive diminution in the clear-water phase during recent years. These changes have been related to the decrease in the abundance of Daphnia and to the reduction of the size of zooplankton, which help to explain concomitant increases in the chlorophyll concentration in the same period. Other observed changes in the composition of the zooplankton community have been the substitution of Daphnia by Bosmina and the increase in the abundance of rotifers. Thus, the annual average abundance of Bosmina in 1997 was 70% of cladocerans, while in 2005 it reached 98%. In parallel, the percentage occurrence of individual rotifers was 40% of total zooplankton numbers but had risen to 85% at the end of the period. All these changes are attributed to the artificial expansion of the food web through stocking of the reservoir with zooplanktivorous fish (Rutilus rutilus and Alburnus alburnus). This study improves our understanding of the trophic relationships in the food web prior to the introduction of the fish.  相似文献   

14.
We examined the impacts of moderate gradient silver carp biomass (five levels from 0 to 36 g.m-3, i.e. about 0-792 kg.ha-1) on zooplankton communities of the eutrophic Villerest reservoir (France). During our mesocosm experiment changes in zooplankton assemblages were dependent on silver carp biomass. In the fishless and low fish biomass treatments, zooplankton abundance increased through time, owing to a peak in cladoceran density, but decreased (mainly cladocerans) at highest fish biomass. Copepods and rotifers were less affected at the highest fish biomass and dominated zooplankton communities. We highlighted that the presence of high silver carp biomass could lead to changes in phytoplankton assemblage via the impact on herbivorous zooplankton. Since silver carp efficiently graze on particles > 20 microns, the suppression of herbivorous cladocerans could result in an increase in small size algae (< 20 microns) abundance since these species would be released from grazers as well as competitors (large algae grazed by silver carp) and nutrients levels would be enhanced by fish internal loading. Our results showed that the use of low silver carp biomass (< 200 kg.ha-1) would allow us to minimize these negative effects.  相似文献   

15.
The results of cladoceran crustaceans studies in the pelagial of the Ivankovo and Uglich water reservoirs were generalized. In the period of 1973–1995, both waterbodies were similar in terms of Cladocera species composition and the dominating complex. The list of species composition of pelagic cladocerans has increased since the 1950s. The highest abundance of cladocerans was observed in the Ivankovo water reservoir. Daphnia cucullata G. Sars has been stably dominant in zooplankton summary biomass, while Chydorus sphaericus (O.F. Müller) and Bosmina longirostris (O.F. Müller) prevailed in terms of abundance. Changes in the pelagic cladoceran complex composition is evidence of the waterbodies’ eutrophication. The share of Cladocera in the zooplankton’s total summer biomass was 68 and 53% in the Ivankovski and Shoshinski stretches of the Ivankovo water reservoir, correspondingly, and 60% in the Uglich water reservoir (on average for 1970s–1990s).  相似文献   

16.
The pattern of annual changes in zooplankton composition andabundance was investigated in Lake Mikolajskie and in a small,artificial pond. Changes in the cladoceran abundance in thelake do not accord with the competitive exclusion principle,which appears to occur in the pond. In the lake, though notin the pond, fish predation on zooplankton seems to weaken interspecificcompetition sufficiently to allow related cladocerans to achievetheir highest levels of abundance simultaneously.  相似文献   

17.
A paleolimnological evaluation was made in order to analyze the effects of increasing nutrient load, macrophyte degradation and fish introductions on the cladoceran community of a large, shallow plateau lake in southwestern China. The trophic state of Lake Dianchi has increased rapidly during recent decades, its macrophyte vegetation has suffered severe degradation, and fish introductions in the late 1950s and early 1980s have had a marked effect on the structure of the fish community. Our results show an increase in abundance of cladoceran species with a preference for eutrophic conditions over the last few decades, while species preferring oligotrophic conditions have decreased or disappeared. These changes correspond to the eutrophication in Lake Dianchi. The loss of the cladocerans Kurzia latissima and Disparalona rostrata is likely to be a reflection of the degradation of the macrophyte community. An increase in Daphnia body size indicated by the ephippia length since the early 1990s is associated with the decline of planktivorous species.  相似文献   

18.
19.
Environmental controls on cladoceran community structure in lake ecosystems are complex and may involve many environmental parameters including trophic state and fish populations. In Lake Erhai, a plateau lake located in southwest China, it was hypothesized that a combination of lake eutrophication and planktivorous fish introduction would increase the abundance of cladoceran, while also decreasing cladoceran size. To test this hypothesis, we examined temporal changes in cladoceran microfossils in the sediments of Lake Erhai over the past century. The influence of changing macrophyte coverage within the littoral region of the lake was also considered. Results demonstrated that cladoceran abundance (measured as flux of cladoceran fossils in the sediments) increased markedly accompanying eutrophication of the lake. In addition, there was a shift in the dominant cladoceran species from those species that prefer oligotrophic conditions to those that prefer mesotrophic and eutrophic conditions. A reduction in the ephippium length of Daphnia spp. was observed and attributed to the introduction of the planktivorous fish Neosalanx taihuensis. Our findings indicated that eutrophication and fish introduction were the main controls affecting cladoceran community structure during the recent decades, and predation by planktivorous fish had an important impact on Daphnia body size.  相似文献   

20.
1. The loss of input of leaf litter through clearing of riparian vegetation may result in significant changes to aquatic ecosystems. River red gums (Eucalyptus camaldulensis) surrounding floodplain wetlands in the Murray–Darling Basin, Australia, contribute large quantities of leaf litter, but the quality of this resource may change depending on the timing of inundation. 2. We used experimental mesocosms to test the hypotheses that zooplankton would have a greater abundance with an input of leaf litter and that fewer zooplankton would emerge from egg banks in cleared than forested wetlands. The experiment was carried out in summer/autumn and in spring to test a third hypothesis that zooplankton would respond to changes in the timing of wetland inundation as a result of river regulation. 3. In summer/autumn, leaf litter reduced zooplankton abundance by 89% at the beginning of the experiment through its influence on water quality. Only a few taxa (Polyarthra spp., Colurella spp. and the cladoceran Family Moinidae) responded positively to leaf litter when water quality improved later in the experiment, indicating a switch in the role of leaf litter from a non‐trophic to a trophic pathway. 4. In spring, microcrustaceans emerged in smaller numbers from sediment sourced from cleared compared to forested wetlands, reflecting different communities in these two wetland types and/or disturbances to the sediment that interfere with emergence. 5. Although leaf litter appears not to be an important resource for zooplankton in floodplain wetlands, riparian clearing may have lasting effects on future emerging zooplankton communities. Additionally, river regulation may have considerable impacts on the influence of leaf litter on zooplankton, which has implications for the management of floodplain river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号