首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors) of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal) modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub microM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed.  相似文献   

2.
Ca2+对骨骼肌钙释放通道的调节   总被引:4,自引:0,他引:4  
Han HM  Yin CC 《生理科学进展》2006,37(2):132-135
钙释放通道(calcium release channel)又称Ryanodine受体(RyR),是细胞内质网膜上介导细胞内钙信号转导的离子通道。RyR1在骨骼肌细胞的兴奋-收缩偶联过程中起重要作用,是肌质网快速释放Ca^2+的通道。许多调节因素,如一些内源性蛋白(FK结合蛋白、钙调素、钙结合蛋白)和一些离子(Ca^2+、Mg^2+),通过不同的作用位点与RyR1结合,调控RyR1的结构与功能。研究表明,Ca^2+是众多调节RyR1因素中的核心成分和前提条件,其对RyR1的结构与功能有重要的调控作用。  相似文献   

3.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   

4.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

5.
BLM modified by a large subunit of Na,K-ATPase is capable of forming ATP-dependent channels of conductivity in the presence of Na+ and K+ ions from the reaction medium eliminated the ATP effect, however, in this case the pNPP activated K+-conductivity is observed.  相似文献   

6.
The brain ryanodine receptor: a caffeine-sensitive calcium release channel.   总被引:22,自引:0,他引:22  
The release of stored Ca2+ from intracellular pools triggers a variety of important neuronal processes. Physiological and pharmacological evidence has indicated the presence of caffeine-sensitive intracellular pools that are distinct from the well-characterized inositol 1,4,5,-trisphosphate (IP3)-gated pools. Here we report that the brain ryanodine receptor functions as a caffeine- and ryanodine-sensitive Ca2+ release channel that is distinct from the brain IP3 receptor. The brain ryanodine receptor has been purified 6700-fold with no change in [3H]ryanodine binding affinity and shown to be a homotetramer composed of an approximately 500 kd protein subunit, which is identified by anti-peptide antibodies against the skeletal and cardiac muscle ryanodine receptors. Our results demonstrate that the brain ryanodine receptor functions as a caffeine-sensitive Ca2+ release channel and thus is the likely gating mechanism for intracellular caffeine-sensitive Ca2+ pools in neurons.  相似文献   

7.
The cardiac type 2 ryanodine receptor (RYR2) is activated by Ca2+-induced Ca2+ release (CICR). The inherent positive feedback of CICR is well controlled in cells, but the nature of this control is debated. Here, we explore how the Ca2+ flux (lumen-to-cytosol) carried by an open RYR2 channel influences its own cytosolic Ca2+ regulatory sites as well as those on a neighboring channel. Both flux-dependent activation and inhibition of single channels were detected when there were super-physiological Ca2+ fluxes (>3 pA). Single-channel results indicate a pore inhibition site distance of 1.2 ± 0.16 nm and that the activation site on an open channel is shielded/protected from its own flux. Our results indicate that the Ca2+ flux mediated by an open RYR2 channel in cells (∼0.5 pA) is too small to substantially regulate (activate or inhibit) the channel carrying it, even though it is sufficient to activate a neighboring RYR2 channel.  相似文献   

8.
Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage.  相似文献   

9.
Caged calcium and the ryanodine receptor.   总被引:1,自引:1,他引:0       下载免费PDF全文
C F Louis 《Biophysical journal》1994,66(6):1739-1740
  相似文献   

10.
11.
The co-release of ATP with norepinephrine from sympatheticnerve terminals in the heart may augment adrenergic stimulation ofcardiac Ca2+ channel activity. To test for a possibledirect effect of extracellular ATP on L-type Ca2+ channels,single channels were reconstituted from porcine sarcolemma into planarlipid bilayers so that intracellular signaling pathways could becontrolled. Extracellular ATP (2-100 µM) increased the openprobability of the reconstituted channels, with a maximal increase of~2.6-fold and an EC50 of 3.9 µM. The increase in open probability was due to an increase in channel availability and adecrease in channel inactivation rate. Other nucleotides displayed arank order of effectiveness of ATP > ,-methylene-ATP > 2-methylthio-ATP > UTP > adenosine5'-O-(3-thiotriphosphate) >> ADP; adenosine had no effect.Several antagonists of P2 receptors had no impact on the ATP-dependentincrease in open probability, indicating that receptor activation wasnot required. These results suggest that extracellular ATP and othernucleotides can stimulate the activity of cardiac L-typeCa2+ channels via a direct interaction with the channels.

  相似文献   

12.
The 95kDa triadin (or T95), the main skeletal muscle triadin isoform, negatively regulates the mechanism of excitation-contraction coupling. T95 is a ryanodine receptor (RyR)-interacting protein but it also possesses a calsequestrin-interacting domain. RyR and calsequestrin are involved in Ca2+ signalling and, for instance, influence the activity of store-dependent Ca2+ channels (SOC). This work was undertaken to determine whether T95 was able to modulate the entry of Ca2+ through SOC. The experiments were carried out on differentiated rat myotubes over-expressing T95 or DsRed (control cells) by means of an adenovirus infection. Intracellular Ca2+ signals were analyzed using the Ca2+ indicator Fluo-4. The sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin was used to deplete intracellular Ca2+ stores. When applied in the presence of a Ca2+-free medium, thapsigargin elicited transient but long-lasting Fluo-4 responses by elevating the cytoplasmic concentration of Ca2+ ([Ca2+]i). The over-expression of T95 reduced the thapsigargin-dependent [Ca2+]i increase, with respect to control myotubes. Addition of extracellular Ca2+after the depletion of this Ca2+ pool was accompanied by a [Ca2+]i increase that was sensitive to the SOC blockers 2-APB, SKF-96365 and La3+. The over-expression of T95 reduced this Ca2+ influx, without changing its pharmacological properties, showing that T95 over-expression did not alter the properties of the SOC. In conclusion, the RyR-interacting molecule T95, recently shown to inhibit the excitation-contraction coupling, has also the ability to interfere with the skeletal muscle Ca2+ signalling by depressing thapsigargin-dependent Ca2+ release and influx.  相似文献   

13.
Intracellular calcium release channels like ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs) mediate large Ca2+ release events from Ca2+ storage organelles lasting >5 ms. To have such long-lasting Ca2+ efflux, a countercurrent of other ions is necessary to prevent the membrane potential from becoming the Ca2+ Nernst potential in <1 ms. A recent model of ion permeation through a single, open RyR channel is used here to show that the vast majority of this countercurrent is conducted by the RyR itself. Consequently, changes in membrane potential are minimized locally and instantly, assuring maintenance of a Ca2+-driving force. This RyR autocountercurrent is possible because of the poor Ca2+ selectivity and high conductance for both monovalent and divalent cations of these channels. The model shows that, under physiological conditions, the autocountercurrent clamps the membrane potential near 0 mV within ∼150 μs. Consistent with experiments, the model shows how RyR unit Ca2+ current is defined by luminal [Ca2+], permeable ion composition and concentration, and pore selectivity and conductance. This very likely is true of the highly homologous pore of the IP3R channel.  相似文献   

14.
Increased oxidative stress contributes to heart dysfunction via impaired Ca2+ homeostasis in diabetes. Abnormal RyR2 function related with altered cellular redox state is an important factor in the pathogenesis of diabetic cardiomyopathy, while its underlying mechanisms remain poorly understood. In the present study, we used a streptozotocin-induced rat model of diabetic cardiomyopathy and tested a hypothesis that diabetes-related alteration in RyR2 function is related with ROS-induced posttranslational modifications. For this, we used heart preparations from either a diabetic rat or a sodium selenate (NaSe)-treated (0.3 mg/kg for 4 weeks) diabetic rat as well as either NaSe- (100 nmol/L) or thioredoxin (Trx; 5 μmol/L)-incubated (30 min) diabetic cardiomyocytes. Experimental approaches included imaging of intracellular free-Ca2+ ([Ca2+]i) under both electrically stimulated and resting Fluo-3-loaded cardiomyocytes. RyR2-mediated SR-Ca2+ leak was significantly enhanced in diabetic cardiomyocytes, resulting in reduced amplitude and prolonged time courses of [Ca2+]i transients compared to those of controls. Both SR-Ca2+ leak and [Ca2+]i transients were normalized by treating diabetic rats with NaSe or by incubating diabetic myocytes with NaSe or Trx. Moreover, exposure of diabetic cardiomyocytes to antioxidants significantly improved [Ca2+]i handling factors such as phosphorylation/protein levels of RyR2, amount of RyR2-bound FKBP12.6 and activities of both protein kinase A and CaMKII. NaSe treatment also normalized the oxidative stress/antioxidant defense biomarkers in plasma as well as Trx activity and nuclear factor-κB phosphorylation in the diabetic rat heart. Collectively, these findings suggest that redox modification through Trx-system besides the glutathione system contributes to abnormal function of RyR2s in hyperglycemic cardiomyocytes, presenting a potential therapeutic target for treating diabetics to preserve cardiac function.  相似文献   

15.
The auxiliary Ca(v)beta subunit is essential for functional expression of high-voltage activated Ca(2+) channels. Here, we describe a lure sequence designed to sequester the Ca(v)beta subunits in transfected bovine chromaffin cells. This sequence is composed of the extracellular and transmembrane domains of the alpha chain of the human CD8, the I-II loop of Ca(v)2.1 subunit, and EGFP. We showed that expressing the CD8-I-II-EGFP sequence in chromaffin cells led to a >50% decrease in overall Ca(2+) current density. Although this decrease involved all the Ca(2+) channel types (L, N, P/Q, R), the proportion of each type supporting the remaining current was altered. A similar effect was observed after transfection when measuring the functional role of Ca(2+) channels in catecholamine release by chromaffin cells: global decrease of release and change of balance between the different channel types supporting it. Possible explanations for this apparent discrepancy are further discussed.  相似文献   

16.
Spontaneously generated calcium (Ca2+) waves can trigger arrhythmias in ventricular and atrial myocytes. Yet, Ca2+ waves also serve the physiological function of mediating global Ca2+ increase and muscle contraction in atrial myocytes. We examine the factors that influence Ca2+ wave initiation by mathematical modeling and large-scale computational (supercomputer) simulations. An important finding is the existence of a strong coupling between the ryanodine receptor distribution and Ca2+ dynamics. Even modest changes in the ryanodine receptor spacing profoundly affect the probability of Ca2+ wave initiation. As a consequence of this finding, we suggest that there is information flow from the contractile system to the Ca2+ control system and this dynamical interplay could contribute to the increased incidence of arrhythmias during heart failure.  相似文献   

17.
Effect in vitro of propoxur on the specific activity of calcium stimulated ATPase and calcium uptake was studied in the rat brain synaptosomes. The data suggest that propoxur might disrupt the synaptic function by altering the calcium dependent ATP hydrolysis and calcium uptake in the central nervous system.  相似文献   

18.
J Ma 《Biophysical journal》1995,68(3):893-899
Ca release channels from the junctional sarcoplasmic reticulum (SR) membranes of rabbit skeletal muscle were incorporated into the lipid bilayer membrane, and the inactivation kinetics of the channel were studied at large membrane potentials. The channels conducting Cs currents exhibited a characteristic desensitization that is both ligand and voltage dependent: 1) with a test pulse to -100 mV (myoplasmic minus luminal SR), the channel inactivated with a time constant of 3.9 s; 2) the inactivation had an asymmetric voltage dependence; it was only observed at voltages more negative than -80 mV; and 3) repetitive tests to -100 mV usually led to immobilization of the channel, which could be recovered by a conditioning pulse to positive voltages. The apparent desensitization was seen in approximately 50% of the experiments, with both the native Ca release channel (in the absence of ryanodine) and the ryanodine-activated channel (1 microM ryanodine). The native Ca release channels revealed heterogeneous gating with regard to activation by ATP and binding to ryanodine. Most channels had high affinity to ATP activation (average open probability (po) = 0.55, 2 mM ATP, 100 microM Ca), whereas a small portion of channels had low affinity to ATP activation (po = 0.11, 2 mM ATP, 100 microM Ca), and some channels bound ryanodine faster (< 2 min), whereas others bound much slower (> 20 min). The faster ryanodine-binding channels always desensitized at large negative voltages, whereas those that bound slowly did not show apparent desensitization. The heterogeneity of the reconstituted Ca release channels is likely due to the regulatory roles of other junctional SR membrane proteins on the Ca release channel.  相似文献   

19.
The local control concept of excitation-contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyR) is controlled by Ca(2+) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise of this hypothesis is that the RyR must be fast enough to track the brief (<0.5 ms) Ca(2+) elevations accompanying single DHPR channel openings. To define the kinetic limits of effective trigger Ca(2+) signals, we recorded activity of single cardiac RyRs in lipid bilayers during rapid and transient increases in Ca(2+) generated by flash photolysis of DM-nitrophen. Application of such Ca(2+) spikes (amplitude approximately 10-30 microM, duration approximately 0.1-0.4 ms) resulted in activation of the RyRs with a probability that increased steeply (apparent Hill slope approximately 2.5) with spike amplitude. The time constants of RyR activation were 0.07-0.27 ms, decreasing with spike amplitude. To fit the rising portion of the open probability, a single exponential function had to be raised to a power n approximately 3. We show that these data could be adequately described with a gating scheme incorporating four sequential Ca(2+)-sensitive closed states between the resting and the first open states. These results provide evidence that brief Ca(2+) triggers are adequate to activate the RyR, and support the possibility that RyR channels are governed by single DHPR openings. They also provide evidence for the assumption that RyR activation requires binding of multiple Ca(2+) ions in accordance with the tetrameric organization of the channel protein.  相似文献   

20.
The synergic effect of luminal Ca(2+), cytosolic Ca(2+), and cytosolic adenosine triphosphate (ATP) on activation of cardiac ryanodine receptor (RYR2) channels was examined in planar lipid bilayers. The dose-response of RYR2 gating activity to ATP was characterized at a diastolic cytosolic Ca(2+) concentration of 100 nM over a range of luminal Ca(2+) concentrations and, vice versa, at a diastolic luminal Ca(2+) concentration of 1 mM over a range of cytosolic Ca(2+) concentrations. Low level of luminal Ca(2+) (1 mM) significantly increased the affinity of the RYR2 channel for ATP but without substantial activation of the channel. Higher levels of luminal Ca(2+) (8-53 mM) markedly amplified the effects of ATP on the RYR2 activity by selectively increasing the maximal RYR2 activation by ATP, without affecting the affinity of the channel to ATP. Near-diastolic cytosolic Ca(2+) levels (<500 nM) greatly amplified the effects of luminal Ca(2+). Fractional inhibition by cytosolic Mg(2+) was not affected by luminal Ca(2+). In models, the effects of luminal and cytosolic Ca(2+) could be explained by modulation of the allosteric effect of ATP on the RYR2 channel. Our results suggest that luminal Ca(2+) ions potentiate the RYR2 gating activity in the presence of ATP predominantly by binding to a luminal site with an apparent affinity in the millimolar range, over which local luminal Ca(2+) likely varies in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号