首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Recent metabolic profiles of human prostate cancer tissues showed a significant increase in cysteine (Cys) and a significant decrease in reduced glutathione (GSH) during cancer progression from low- to high-grade Gleason scores. Cys is primarily localized extracellularly, whereas GSH is present mostly inside the cell. We hypothesized that extra- or intracellular redox state alterations differentially regulate cell invasion in PC3 prostate carcinoma cells versus PrEC normal prostate epithelial cells. Cells were exposed to media with calculated Cys/CySS redox potentials (E(h)CySS) ranging from -60 to -180mV. After 3h exposure to a reducing extracellular redox state (E(h)CySS=-180mV), matrix metalloprotease (MMP), gelatinase, and NADPH oxidase activities increased, correlating with increases in cell invasion, cell migration, and extracellular hydrogen peroxide levels in PC3 cells but not PrECs. Knockdown of NADPH oxidase or MMP with silencing RNAs during cultivation with E(h)CySS=-180mV medium significantly decreased PC3 cell invasion. Modulation of extra- and intracellular redox states by exposure of PC3 cells to Cys/CySS-free medium (approx E(h)CySS=-87mV) containing 500μMN-acetylcysteine resulted in a more reducing intracellular redox state and a significant decrease in cell invasive ability. The decrease in PC3 cell invasion induced by these conditions correlated with a decrease in MMP activity. Our studies demonstrated that an extracellular redox state that was more reducing than a physiologic microenvironment redox state increased PC3 cancer cell invasive ability, whereas an intracellular redox environmental that was more reducing than an intracellular physiologic redox state inhibited PC3 cell invasive ability.  相似文献   

2.
Dissimilatory metal-reducing bacteria (DMRB) utilize numerous compounds as terminal electron acceptors, including insoluble iron oxides. The mechanism(s) of insoluble-mineral reduction by DMRB is not well understood. Here we report that extracellular melanin is produced by Shewanella algae BrY. The extracted melanin served as the sole terminal electron acceptor. Upon reduction the reduced, soluble melanin reduced insoluble hydrous ferric oxide in the absence of bacteria, thus demonstrating that melanin produced by S. algae BrY is a soluble Fe(III)-reducing compound. In the presence of bacteria, melanin acted as an electron conduit to Fe(III) minerals and increased Fe(III) mineral reduction rates. Growth of S. algae BrY occurred in anaerobic minimal medium supplemented with melanin extracted from previously grown aerobic cultures of S. algae BrY. Melanin produced by S. algae BrY imparts increased versatility to this organism as a soluble Fe(III) reductant, an electron conduit for iron mineral reduction, and a sole terminal electron acceptor that supports growth.  相似文献   

3.
Melanin is a recognized virulence factor in Cryptococcus neoformans; several pathogenetic mechanisms have been suggested. We studied melanin as an antifungal resistance factor. The growth of laccase-active strains of C. neoformans and C. albidus in L-DOPA resulted in the production of black pigment. The formal minimal inhibitory concentrations (MICs) of amphotericin B and fluconazole were not changed by melanization. However, when we examined those wells which contained inhibited cells, we found live cells only in wells containing melanized C. neoformans. In contrast, melanization did not protect C. albidus from killing by amphotericin B. In an amphotericin B time-kill study of C. neoformans, significantly more melanized cells than non-melanized survived for the first few hours. Fluorescence microscopy and flow cytometry analyses showed that fewer melanized cells were stained with the fluorescent dye MitoRed. Incubation of MitoRed (the model) or amphotericin B with melanin extracted from C. neoformans decreased the free concentrations of these substances. Fluconazole, in contrast, was not removed from solution by melanin. This suggests that neoformans cryptococcal melanin deposited amphotericin B in the cell wall binds, reducing its effective concentrations.  相似文献   

4.
The sphingolipid biosynthetic pathway generates bioactive molecules crucial to the regulation of mammalian and fungal physiological and pathobiological processes. In previous studies (Luberto, C., Toffaletti, D. L., Wills, E. A., Tucker, S. C., Casadevall, A., Perfect, J. R., Hannun, Y. A., and Del Poeta, M. (2001) Genes Dev. 15, 201-212), we demonstrated that an enzyme of the fungal sphingolipid pathway, Ipc1 (inositol-phosphorylceramide synthase-1), regulates melanin, a pigment required for the pathogenic fungus Cryptococcus neoformans to cause disease. In this study, we investigated the mechanism by which Ipc1 regulates melanin production. Because Ipc1 also catalyzes the production of diacylglycerol (DAG), a physiological activator of the classical and novel isoforms of mammalian protein kinase C (PKC), and because it has been suggested that PKC is required for melanogenesis in mammalian cells, we investigated whether Ipc1 regulates melanin in C. neoformans through the production of DAG and the subsequent activation of Pkc1, the fungal homolog of mammalian PKC. The results show that modulation of Ipc1 regulates the levels of DAG in C. neoformans cells. Next, we demonstrated that C. neoformans Pkc1 is a DAG-activated serine/threonine kinase and that the C1 domain of Pkc1 is necessary for this activation. Finally, through both pharmacological and genetic approaches, we found that inhibition of Pkc1 abolishes melanin formation in C. neoformans. This study identifies a novel signaling pathway in which C. neoformans Ipc1 plays a key role in the activation of Pkc1 through the formation of DAG. Importantly, this pathway is essential for melanin production with implications for the pathogenicity of C. neoformans.  相似文献   

5.
Dissimilatory metal-reducing bacteria (DMRB) utilize numerous compounds as terminal electron acceptors, including insoluble iron oxides. The mechanism(s) of insoluble-mineral reduction by DMRB is not well understood. Here we report that extracellular melanin is produced by Shewanella algae BrY. The extracted melanin served as the sole terminal electron acceptor. Upon reduction the reduced, soluble melanin reduced insoluble hydrous ferric oxide in the absence of bacteria, thus demonstrating that melanin produced by S. algae BrY is a soluble Fe(III)-reducing compound. In the presence of bacteria, melanin acted as an electron conduit to Fe(III) minerals and increased Fe(III) mineral reduction rates. Growth of S. algae BrY occurred in anaerobic minimal medium supplemented with melanin extracted from previously grown aerobic cultures of S. algae BrY. Melanin produced by S. algae BrY imparts increased versatility to this organism as a soluble Fe(III) reductant, an electron conduit for iron mineral reduction, and a sole terminal electron acceptor that supports growth.  相似文献   

6.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 x 10(3) M(-1)s(-1) at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 micro M), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

7.
Zhong J  Frases S  Wang H  Casadevall A  Stark RE 《Biochemistry》2008,47(16):4701-4710
Melanins serve a variety of protective functions in plants and animals, but in fungi such as Cryptococcus neoformans they are also associated with virulence. A recently developed solid-state nuclear magnetic resonance (NMR) strategy, based on the incorporation of site-specific (13)C-enriched precursors into melanin, followed by spectroscopy of both powdered and solvent-swelled melanin ghosts, was used to provide new molecular-level insights into fungal melanin biosynthesis. The side chain of an l-dopa precursor was shown to cyclize and form a proposed indole structure in C. neoformans melanin, and modification of the aromatic rings revealed possible patterns of polymer chain elongation and cross-linking within the biopolymer. Mannose supplied in the growth medium was retained as a beta-pyranose moiety in the melanin ghosts even after exhaustive degradative and dialysis treatments, suggesting the possibility of tight binding or covalent incorporation of the pigment into the polysaccharide fungal cell walls. In contrast, glucose was scrambled metabolically and incorporated into both polysaccharide cell walls and aliphatic chains present in the melanin ghosts, consistent with metabolic use as a cellular nutrient as well as covalent attachment to the pigment. The prominent aliphatic groups reported previously in several fungal melanins were identified as triglyceride structures that may have one or more sites of chain unsaturation. These results establish that fungal melanin contains chemical components derived from sources other than l-dopa polymerization and suggest that covalent linkages between l-dopa-derived products and polysaccharide components may serve to attach this pigment to cell wall structures.  相似文献   

8.
9.
Chitinases are necessary for fungal cell wall remodeling and cell replication. Methylxanthines have been shown to competitively inhibit family 18 chitinases in vitro. We sought to determine the effects of methylxanthines on fungal chitinases. Fungi demonstrated variable chitinase activity and incubation with methylxanthines (0.5-10 mM) resulted in a dose-dependent decrease in this activity. All fungi tested, except for Candida spp., demonstrated growth inhibition in the presence of methylxanthines at a concentration of 10 mM. India ink staining demonstrated impaired budding and decreased cell size for methylxanthine-treated Cryptococcus neoformans. C. neoformans and Aspergillus fumigatus treated with pentoxifylline also exhibited abnormal cell morphology. In addition, pentoxifylline-treated C. neoformans exhibited increased susceptibility to calcofluor and a leaky melanin phenotype consistent with defective cell wall function. Our data suggest that a variety of fungi express chitinases and that methylxanthines have antifungal properties related to their inhibition of fungal chitinases. Our results highlight the potential utility of targeting chitinases in the development of novel antifungal therapies.  相似文献   

10.
The presence of ferric chelate reducing activity in sunflower[Helianthus annuus L.) leaves has been studied by submergingleaf discs in a solution with Fe(III)-ethylenediaminetetra-acetate(FeEDTA), batho-phenanthroline disulphonate (BPDS) and vacuuminfiltration. The effect of different factors on the Fe(III)reduction rate was studied. Ferric reduction rate was about10-fold higher in the light than in darkness. The light effectwas greatly inhibited by 3-(3,4-dichloro-phenyl)-1,1-dimethylurea(DCMU), a photosystem II inhibitor. Several inhibitors of redoxsystems [cis-platinum (II) diamine dichloride (cis-platin),p-nitro-phenylacetate (p-NPA) and p-hydroxymercuribenzoic acid(pHMB)] decreased the FeEDTA reduction rate. The greatest inhibitionwas produced by the - SH group reagent pHMB (17% of control,in light). The FeEDTA reduction rate was much higher in theabsence of O2 than with air or 100% O2. Superoxide dismutase(SOD) decreased FeEDTA reduction with air in the light. Youngleaves reduced Fe(III)-chelate at a higher rate than did olderleaves. In iron-deficient plants, leaves did not exhibit enhancedferric chelate-reducing activity as was observed in roots. Itis suggested that at least two different redox systems or twostates of the same redox system work in the light and in darkness. Key words: Iron, leaves, plasma membrane-redox, light, oxygen level  相似文献   

11.
Gessa  C.  Deiana  S.  Premoli  A.  Ciurli  A. 《Plant and Soil》1997,190(2):289-299
The transfer of several metal ions from the soil to the plant absorbing cells is mediated principally by organic molecules of low molecular weight with complexing and reducing activity, among which caffeic acid (CAF) is particularly important. Here we report the results of a survey which deals with the oxidation of CAF by the Fe(III) ions bound to a polygalacturonate network (Fe(III)-PGA network). The interaction between Fe(III) and CAF was studied by using Fe(III)-PGA networks equilibrated in the 2.4-7.0 pH range by means of kinetic and spectroscopic methods. The reducing power was found to depend on the nature of the Fe(III)-PGA network complexes: when the ferric ion was complexed only by the PGA carboxylic groups, a high redox activity was observed, whereas the Fe(III) reduction was found to be lower when a hydroxylic group was inserted in the Fe(III) coordination sphere. The iron complexed in the network was protected from hydrolysis reactions, as shown by the high pH values at which its reduction occurred. Two different fractions of Fe(II) produced were identified, one diffusible and another exchangeable with CaCl2 6.0 mM. The existence of the exchangeable form was attributed to the electrostatic interaction of the Fe(II) ions with the carboxylate groups of the fibrils and with the degradation products of CAF. The arrangement of the fibrils was altered following the substitution of Ca(II) by Fe(III) ions and was restored following the reduction of Fe (III) by CAF.  相似文献   

12.
Large-molecule oxidants oxidize Fe(II) to form Fe(III) cores in the interior of ferritins at rates comparable to or faster than the iron deposition reaction using O(2) as oxidant. Iron deposition into horse spleen ferritin (HoSF) occurs using ferricyanide ion, 2,6-dichlorophenol-indophenol, and several redox proteins: cytochrome c, stellacyanin, and ceruloplasmin. Cytochrome c also loads iron into recombinant human H-chain (rHF), human L-chain (rLF), and A. vinelandii bacterioferritin (AvBF). The enzymatic activities of ferritins were monitored anaerobically using stopped-flow kinetic spectrophotometry. The reactions exhibit saturation kinetics with respect to the large oxidant concentrations, giving apparent Michaelis constants for cytochrome c as oxidant: K(m)=39.6 microM for HoSF and 6.9 microM for AvBF. Comparison of the kinetic parameters with that of iron deposition by O(2) shows that large oxidants load iron into HoSF and AvBF more effectively than O(2) and may use a mechanism different than the ferroxidase center. Large oxidants did not deposit iron as efficiently with rHF and rLF. The results suggest that the heme groups in AvBF and the protein redox centers present in heteropolymers may assist in anaerobic iron deposition by large oxidants. The physiological relevance of iron deposition by large molecules, including protein oxidants is discussed.  相似文献   

13.
Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi(+3)) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown.  相似文献   

14.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl(3), the content of bound Fe(III) can be increased from a natural concentration of approximately 180 ppm to a saturation limit of approximately 80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH-dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)-saturated melanin sample without affecting the amount of Fe(III) pre-adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o-dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer-Emmett-Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

15.
16.
Aerobic organisms are faced with a dilemma. Environmental iron is found primarily in the relatively inert Fe(III) form, whereas the more metabolically active ferrous form is a strong pro-oxidant. This conundrum is solved by the redox cycling of iron between Fe(III) and Fe(II) at every step in the iron metabolic pathway. As a transition metal ion, iron can be “metabolized” only by this redox cycling, which is catalyzed in aerobes by the coupled activities of ferric iron reductases (ferrireductases) and ferrous iron oxidases (ferroxidases).  相似文献   

17.
Melanin synthesis in Cryptococcus neoformans, catalyzed by phenoloxidase activity, is one of the oldest virulence factors known. However, until now, the relationship between melanin production in C. neoformans and its virulence has been poorly understood. Among different chemical compounds only Fe3+ and Cu2+ cations enhance the phenoloxidase activity in C. neoformans. A few reports in the literature describe the influence of different cations on C. neoformans phenoloxidase activity, excluding iron. In this study, 13 C. neoformans strains isolated from AIDS patients and 7 from bird droppings (B.D.), were examined in order to clarify the effect of different K+ concentrations on phenoloxidase activity. A new solid and liquid caffeic acid minimal synthetic medium (MSM-CAF) containing only caffeic acid and ferric citrate with different potassium concentrations was used to evaluate C. neoformans phenoloxidase activity. In the MSM-CAF solid medium the degree of brown pigmentation on the agar plates was read on days 1, 2 and 3 of incubation, and the pigmentation of the C. neoformans strains was classed into 5 categories. The brown pigment of the liquid MSM-CAF test tubes were checked after 24 hours of incubation by measuring the optical density (O.D.) at 480 nm. Three C. neoformans AIDS and B.D. strains, randomly chosen, were tested for phenoloxidase activity, according to the modified protocols of Polacheck et al., Torres-Guerrero et al. and Rhodes. According to the results obtained, it has been observed that K+ does not activate the phenoloxidase activity in the C. neoformans AIDS and B.D. strains. In particular, with an increase in potassium concentrations in the MSM-CAF solid and liquid medium, there was a corresponding inhibition of the phenoloxidase activity on both the C. neoformans AIDS and B.D. strains.  相似文献   

18.
19.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl3, the content of bound Fe(III) can be increased from a natural concentration of ~180 ppm to a saturation limit of ~80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH‐dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)‐saturated melanin sample without affecting the amount of Fe(III) pre‐adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o‐dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer–Emmett–Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

20.
Ferrous iron [Fe(II)] reductively transforms heavy metals in contaminated groundwater, and the bacterial reduction of indigenous ferric iron [Fe(III)] to Fe(II) has been proposed as a means of establishing redox reactive barriers in the subsurface. The reduction of Fe(III) to Fe(II) can be accomplished by stimulation of indigenous dissimilatory metal-reducing bacteria (DMRB) or injection of DMRB into the subsurface. The microbially produced Fe(II) can chemically react with contaminants such as Cr(VI) to form insoluble Cr(III) precipitates. The DMRB Shewanella algae BrY reduced surface-associated Fe(III) to Fe(II), which in batch and column experiments chemically reduced highly soluble Cr(VI) to insoluble Cr(III). Once the chemical Cr(VI) reduction capacity of the Fe(II)/Fe(III) couple in the experimental systems was exhausted, the addition of S. algae BrY allowed for the repeated reduction of Fe(III) to Fe(II), which again reduced Cr(VI) to Cr(III). The research presented herein indicates that a biological process using DMRB allows the establishment of a biogeochemical cycle that facilitates chromium precipitation. Such a system could provide a means for establishing and maintaining remedial redox reactive zones in Fe(III)-bearing subsurface environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号