首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The neuropeptide- and catecholamine-synthesizing enzyme content and ultrastructure of the peri-ureteric ganglia of guinea-pigs were investigated. Small numbers of neuronal perikarya were present at frequent intervals forming ganglia close to, and along the entire length of, the ureter. Each of these ganglia was surrounded by a connective tissue capsule, and was located in the peri-ureteric connective tissues. Within each ganglion were typical nerve terminals and varicosities containing small, clear synaptic vesicles or synaptic vesicles with an electron-dense core, or a mixture of the two. In the ganglia, immunoreactivity to tyrosine hydroxylase, dopamine hydroxylase, neuropeptide tyrosine, or vasoactive intestinal peptide was present in neuronal perikarya; immunoreactivity to substance P or leucine enkephalin was present in nerve terminals and varicosities. Electron-microscopic immunogold studies indicated that there was no coexistence of substance P and enkephalin in the nerve terminals, unlike related ganglia in the pelvis of guinea-pigs.  相似文献   

2.
Summary The uranaffin reaction in rat anococcygeus muscle, which receives a dual innervation of both adrenergic and non-cholinergic, non-adrenergic nerves was examined. Dense reaction product was observed in the vesicular membranes and/or the cores of some synaptic vesicles in the adrenergic nerve terminals. Occasional vesicles were filled up with dense reaction product. In the prominent population of small clear vesicles, however, no dense reaction product was observed. The number of small granular vesicles in the adrenergic nerve terminals was markedly increased after the administration of 5-hydroxydopamine (5-OHDA). These granular vesicles were moderately stained with uranaffin deposit on the cores but their limiting membranes possessed no uranaffin deposit at all.In the non-adrenergic nerve terminals, on the other hand, uranaffin deposit of variable density was observed on the cores of large granular vesicles but never on their limiting membranes or on the small clear vesicles. There was no change in the axon profiles after the administration of 5-OHDA.The possible occurrence of purines in the cores of large granular vesicles in the non-adrenergic nerves is discussed.  相似文献   

3.
Summary Synaptic regulation of arginine vasopressin (AVP)-containing neurons by neuropeptide Y (NPY)-containing monoaminergic neurons was demonstrated in the paraventricular nucleus of the rat hypothalamus. NPY and AVP were immunolabeled in the pre- and the post-embedding procedures, respectively, and monoaminergic fibers were marked by incorporating 5-hydroxydopamine (5-OHDA), a false neurotransmitter. The immunoreaction for NPY was expressed by diaminobenzidine (DAB) chromogen, and that for AVP by gold particles. The DAB chromogen was localized on the surface of the membrane structures, such as vesicles or mitochondria, and on the core of large cored vesicles. Gold particles were located on the core of the secretory granules within the AVP cell bodies and processes. The incorporated 5-OHDA was found as dense cores within small or large vesicular structures. From these data, three types of nerve terminals were discernible: NPY-containing monoaminergic, NPY-containing non-aminergic, and monoaminergic fibers. The AVP cell bodies appeared to have synaptic junctions formed by these nerve terminals as well as by the unlabeled nerve terminals which have small clear vesicles and large cored vesicles. These different types of nerve terminals were frequently observed in a closely apposed position on the same AVP cell bodies. The functional relationships of these three types of neuronal terminals are discussed.  相似文献   

4.
Calcitonin gene-related peptide-immunoreactive (CGRP-IR) nerves within guinea-pig peribronchial ganglia were studied at ultrastructural level using pre-embedding immunohistochemistry. Preterminal CGRP-IR axons were unmyelinated and contained singular immunoreactive dense core vesicles. CGRP-IR axon terminals were filled with numerous non-reactive small clear vesicles and few immunoreactive dense core vesicles. Some of these terminals were presynaptic to large neuronal processes emerging from local ganglion cells. Another population of presynaptic varicosities lack CGRP-IR. Within CGRP-IR terminals, non-reactive clear vesicles were clustered at the presynaptic membrane whereas CGRP-IR large vesicles remained in some distance from the synaptic cleft. The present observations indicate that: (1) at least two neurochemically different types of synaptic input exist to guinea-pig peribronchial ganglia. (2) CGRP-IR presynaptic terminals probably utilize a non-peptide transmitter for fast synaptic transmission, whilst the peptides are likely to be released parasynaptically and may act in a modulatory fashion.  相似文献   

5.
Summary The innervation of the arteriovenous anastomoses in the dog tongue has been investigated. At the lightmicroscopic level, the vessels were found to be densely supplied with adrenergic and AChE-positive nerve plexuses and less densely with the quinacrine-binding nerve plexus. At the electron-microscopic level, at least two apparently different types of axon profiles were identified: 1) Small vesicle-containing axons, characterized by many small granular vesicles, variable numbers of small clear vesicles and large granular vesicles. Storage of endogenous amines and uptake of exogenous amines into most small granular vesicles and many large granular vesicles was demonstrated. These axons stained only lightly with reaction products for AChE activity and thus seemed to be adrenergic in nature. Some axons contained numerous large granular vesicles, whose cores occasionally stained with uranyl ions; this suggests a co-localization of ATP or peptides as neurotransmitters. 2) Small granular vesicle-free axons, containing small clear vesicles and large granular vesicles in variable ratio. Most cores of these large granular vesicles were heavily stained with uranyl ions. No storage or uptake of amine into the synaptic vesicles was detected. Some axons appeared to be typically cholinergic, some, typically non-adrenergic, noncholinergic, and the rest, intermediate between the two. All axons stained heavily with reaction products for AChE activity, suggesting their cholinergic nature.  相似文献   

6.
Summary The innervation of the pancreas of the domestic fowl was studied electron microscopically. The extrapancreatic nerve is composed mostly of unmyelinated nerve fibers with a smaller component of myelinated nerve fibers. The latter are not found in the parenchyma. The pancreas contains ganglion cells in the interlobular connective tissue. The unmyelinated nerve fibers branch off along blood vessels. Their synaptic terminals contact with the exocrine and endocrine tissues. The synaptic terminals can be divided into four types based on a combination of three kinds of synaptic vesicles. Type I synaptic terminals contain only small clear vesicles about 600 Å in diameter. Type II terminals are characterized by small clear and large dense core vesicles 1,000 Å in diameter. Type III terminals contain small clear vesicles and small dense core vesicles 500 Å in diameter. Type IV terminals are characterized by small and large dense core vesicles. The exocrine tissue receives a richer nervous supply than the endocrine tissue. Type II and IV terminals are distributed in the acinus, and they contact A and D cells of the islets. B cells and pancreatic ducts are supplied mainly by Type II terminals, the blood vessels by Type IV terminals.This work was supported by a scientific research grant (No. 144017) and (No. 136031) from the Ministry of Education of Japan to Prof. M. Yasuda  相似文献   

7.
The ultrastructure of substance P (SP)-containing axon terminals in the mucosa of the human urinary bladder was studied. Numerous SP-immunoreactive varicose nerve fibers were seen in the lamina propria, and most of them ran freely in the connective tissue. Many SP-immunoreactive nerve fibers were observed beneath the epithelium, and perivascular SP-immunoreactive nerves were also found in the submucosal layer. We observed a total of 305 SP-immunoreactive (IR) axon terminals, of which most (89.6%) were free nerve endings at the ultrastructural level; the rest of the SR-IR axon terminale were seen in the vicinity of the epithelium and blood vessels in the lamina propria. Varicose regions of SP-IR axon terminals contained large granular and small agranular synaptic vesicles, and most of them partially lacked a Schwann cell sheath. In some SP-IR varicosities, synaptic vesicles were concentrated in the region without any Schwann cell sheath. Long storage (for more than 1 month) of fixed-tissue pieces in sucrose before freezing has improved the ultrastructure of cryostat sections in pre-embedding immunohistochemistry. Trypsin digestion for the purpose of exposing antigenic sites was also employed before applying the first antiserum.  相似文献   

8.
Summary The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dotlike terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

9.
The fine structure of the kidney and the bladder of the bullfrog (Rana catesbeiana), the bullfrog tadpole, and the mudpuppy (Necturus maculosus) were studied with special attention to the innervation of renal tubule cells and bladder epithelial cells. In the bullfrog kidney, nerve terminals and varicosities were frequently associated with the tubule cells, apparently in an increasing order from the proximal tubule to the connecting tubule. Although these terminals and varicosities did not directly contact the tubular cell membrane, an aggregation of synaptic vesicles on the side facing the tubule was considered as morphological evidence that neurotransmitter can be released here and can affect the transport activity of the tubule cells. The association of nerve varicosities with canaliculi cells in the connecting tubule was also demonstrated. In the bullfrog tadpoles, renal tubule cells were occasionally innervated. In the mudpuppy, renal tubule cells were only poorly innervated. The epithelium of the bullfrog bladder was commonly innervated. Nerve terminals with synaptic vesicles were located very near basal cells and even contacted them directly on rare occasions. In the mudpuppy, the innervation of the bladder epithelium was observed infrequently. The bullfrog tadpoles did not possess an apparent bladder. In all materials studied, renal arterioles and bladder smooth muscle cells were innervated.  相似文献   

10.
The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dot-like terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

11.
E Fehér  J Vajda 《Acta anatomica》1979,104(3):340-348
The interneuronal synapses of the urinary bladder in the cat were studied by electron microscopy. The great majority of the fibres containing vesicles are found within the ganglia occurring in the trigonum area. Morphologically differentiated synaptic contacts could be observed on the surface of the local neurons and between the different nerve processes. The presynaptic terminals can be divided into three types based on a combination of synaptic vesicles. Type I terminals, presumably cholinergic synaptic terminals, contain only small clear vesicles of 40-50 nm in diameter. Type II terminals, presumably adrenergic terminals, are characterized by small granulated vesicles of 40-60 nm in diameter. Type III terminals, probably of local origin, contain a variable number of large granulated vesicles of 80-140 nm in diameter. Occasionally, a single nerve fibre contacted several (two or four) other nerve processes forming a typical synapse. In other cases, on one nerve cell soma or on other nerve processes there are two or three different-type nerve terminals establishing synapses. It might be inferred from these observations that convergence and divergence can occur in the local ganglia and that cholinergic and adrenergic synaptic terminals can modulate the ganglionic activity. However, a local circuit also can play an important role in coordinating the function of the bladder.  相似文献   

12.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

13.
P Redecker 《Histochemistry》1991,95(5):503-511
Electron microscopy of the median eminence (ME) of the Mongolian gerbil (Meriones unguiculatus) revealed that, unlike most other mammalian species, abundant neurohaemal contacts were present not only in the external zone (EZ), but also in the internal zone (IZ) up to the subependymal layer. In the IZ, nerve terminals with dense core vesicles and/or small clear vesicles abutted on the outer basal lamina of the perivascular space of portal capillaries, alternating with tanycyte processes. In addition to these neurohaemal contacts, several layers of vesicle-filled varicosities surrounded the portal vasculature. An analysis of serial thin sections showed that the latter varicosities could also reach the perivascular basal lamina or contact it through small extensions in other planes of section. Apparently at least some of the nerve terminals making neurohaemal contacts were en passant in nature. A correlative investigation of synaptophysin (a major integral membrane protein of small synaptic vesicles) immunoreactivity at the light microscopical level demonstrated a conspicuously dense immunostaining around portal capillaries in both EZ and IZ of the proximal and distal ME (neural stalk). Since this perivascular accumulation of immunoreactivity coincides precisely with the ultrastructural accumulation of vesicle-filled axons which establish numerous neurohaemal contacts, it is concluded that this pattern of synaptophysin immunostaining indicates sites of neurohaemal contacts at the light microscopical level. During postnatal development, the perivascular concentration of synaptophysin immunoreactivity in the IZ appeared concomitantly with the early postnatal expansion of long portal capillary loops into the IZ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The postganglionic axons of sympathetic neurons innervating the mouse vas deferens were stimulated transmurally in vitro by passing square pulses between two platinum electrodes. The ultrastructural appearance of the adrenergic nerve terminals was compared to samples fixed immediately after 30 min of stimulation and in samples allowed to recover for 2 h before fixation. The contralateral vasa deferentia served as controls, and these were incubated in Krebs solution for the same period as stimulated muscles. For each of four experiments, the mean number of large and small dense-core vesicles per square micrometer was calculated, as were the mean area and perimeter of the axon varicosities in each group. It was found that the number of small vesicles per square micrometer decreased by 60% during the stimulation period, but returned almost to control levels 2 h later. Large vesicles did not change in number during the stimulation or recovery periods. The proportion of vesicles containing cores was also determined for each group and found to decline just after stimulation in the small vesicle population, but to remain constant in the large vesicle population. The core depletion was partly reversed after 2 h. The vesicle recovery process was studied by use of the extracellular tracer horseradish peroxidase (HRP). When HRP was present in the extracellular space during stimulation, large numbers of vesicles contained the marker after recovery from stimulation. Thus, it is proposed that adrenergic axon varicosities recycle vesicle membrane through the plasma membrane in a manner similar to that already described for cholinergic nerve terminals.  相似文献   

15.
Summary The zona glomerulosa of the rat adrenal gland is innervated by catecholaminergic nerves. Using histofluorescence techniques, we observed catecholaminergic plexuses surrounding adrenal capsular and subcapsular blood vessels. Individual varicose nerve fibers that branched off these plexuses were distributed among adrenal glomerulosa cells. This innervation was permanently eliminated after neonatal sympathectomy with guanethidine or 6-hydroxydopamine, but was not affected by ligation of the splanchnic nerve or extirpation of the suprarenal ganglion. At the ultrastructural level, axonal varicosities were commonly observed in close proximity to glomerulosa cells and blood vessels. Nerve fibers and varicosities were found to contain small (30–60 nm) clear vesicles as well as large (60–110 nm) and small (30–60 nm) dense-cored vesicles. In tissue fixed for the dichromate reaction with or without pretreatment with the false transmitter 5-hydroxydopamine, many nerve terminals contained numerous small dense-cored vesicles which are thought to contain catecholamines. These results establish the anatomical substrate for the catecholaminergic innervation of the rat adrenal cortex.  相似文献   

16.
Summary The innervation and myocardial cells of the human atrial appendage were investigated by means of immunocytochemical and ultrastructural techniques using both tissue sections and whole mount preparations. A dense innervation of the myocardium, blood vessels and endocardium was revealed with antisera to general neuronal (protein gene product 9.5 and synaptophysin) and Schwann cell markers (S-100). The majority of nerve fibres possessed neuropeptide Y immunoreactivity and were found associated with myocardial cells, around small arteries and arterioles at the adventitial-medial border and forming a plexus in the endocardium. Subpopulations of nerve fibres displayed immunoreactivity for vasoactive intestinal polypeptide, somatostatin, substance P and calcitonin gene-related peptide. In whole-mount preparations of endocardium, substance P and calcitonin gene-related peptide immunoreactivities were found to coexist in the same varicose nerve terminals. Ultrastructural studies revealed the presence of numerous varicose terminals associated with myocardial, vascular smooth muscle and endothelial cells. Neuropeptide Y immunoreactivity was localised to large electron-dense secretory vesicles in nerve terminals which also contained numerous small vesicles. Atrial natriuretic peptide immunoreactivity occurred exclusively in myocardial cells where it was localised to large secretory vesicles. The human atrial appendage comprises a neuroendocrine complex of peptidecontaining nerves and myocardial cells producing ANP.  相似文献   

17.
Summary The presence of immunoreactive enkephalin, dynorphin, vasoactive intestinal polypeptide, cholecystokinin, substance P and neuropeptide Y in nerve fibers that project to the guinea-pig inferior mesenteric ganglion was analysed, after different denervation and ligation procedures. A quantitative analysis demonstrates that enkephalin- and substance P fibers reach the ganglion mainly via lumbar splanchnic and partly via intermesenteric nerves. Dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin fibers reach the ganglion mainly via colonic and partly via hypogastric or intermesenteric nerves. Neuropeptide Y fibers enter via intermesenteric, lumbar splanchnic and hypogastric nerves and pass through the ganglion. Analysis of serial 0.5 m sections tends to confirm co-existence: of dynorphin, vasoactive intestinal polypeptide and cholecystokinin in fibers projecting from the colon; of dynorphin with substance P in the lumbar splanchnic nerves; and of neuropeptide Y with substance P in the hypogastric and colonic fibers. Synaptic contacts, predominantly axodendritic, onto the ganglion cells from enkephalin-, vasoactive intestinal polypeptide-, and substance P-containing terminals were revealed by electron microscopy. Enkephalin-immunoreactive axon varicosities are filled with small, clear vesicles with a few large, cored vesicles and form asymmetric synapses; dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive axon varicosities are rich in large, dense-cored vesicles and form symmetric synapses.  相似文献   

18.
Summary A monoclonal antibody that recognises the C-terminal part of substance P was used to study immunoreactive structures in the substantia nigra by the unlabeled antibody, peroxidase-antiperoxidase procedure. Immunoreactivity was present in nerve fibres in all parts of the substantia nigra, particularly in the pars reticulata and pars lateralis. Electron microscopically two types of bouton immunoreactive for substance P were found: Type 1 contained large electron-lucent vesicles, occasional large granulated vesicles and formed symmetrical synapses with dendrites. Type 2 boutons contained smaller, round electron-lucent vesicles, many large granular vesicles and formed asymmetrical synapses (having prominent postjunctional dense bodies) with dendrites and perikarya.Immunoreactive fibres with varicosities that had been identified light microscopically were studied in serial sections in the electron microscope. Each identified varicosity contained synaptic vesicles and formed a single synapse. An individual fibre formed boutons of only one kind (type 1 or type 2) and could form multiple synapses with the same neuron. Thus, an identified fibre in the pars compacta had eight varicosities, each of which was in synaptic contacts (type 2) with the dendrites or soma of the same neuron.The results are consistent with the concept that substance P is a synaptic transmitter in the substantia nigra and indicate that neurons in this region may receive a significant input from substance P-containing afferents, and that there are at least two types of such afferent fibres.  相似文献   

19.
Localization of acetylcholinesterase (AChE) was investigated in the chicken Harderian gland at the electron microscopic level. Nerve cells in the pterygopalatine ganglion showed AChE activity. They had a pale and large nucleus which was round or oval in shape. Reaction product of AChE was detected between the nuclear envelopes; in the cisterna of rough endoplasmic reticulum and the lumen of the Golgi lamellae, and on the plasma membrane of the nerve cell. In the interstitium of the gland, nerve fibers showing AChE activity were easily found. They were often seen in the perivascular space and between plasma cells. These nerve fibers had varicosities in contact with plasma cells and the endothelium or the smooth muscle fiber of the blood vessels. AChE-positive varicosities or terminals contained many small clear vesicles (about 50nm in diameter) and a few large dense-cored vesicles (about 100 nm in diameter). No contacts of nerve fibers with acinar cells or the ductal epithelium were observed in the present study. Our data indicate that cholinergic nerves play distinct roles in the regulation of the immune function of the chicken Harderian gland.  相似文献   

20.
Contacts between small unmyelinated nerve fibres and dermal melanophores of the angelfish, Pterophyllum scalare, exhibit several features characteristic of synapses, including small synaptic vesicles and dense core vesicles, a narrow synaptic cleft, electron-dense material at the postsynaptic membrane (cell membrane of the melanophore) and, occasionally, presynaptic densities. An analysis of serial thin sections shows that the synapses described here represent varicosities of an otherwise more or less straight nerve fibre. A single axon thereby may form several en passant synapses with a single melanophore. It is suggested that the synaptic contacts described here not only represent sites of transmitter release but also play a role as sites of firm attachment between nerves and melanophores which guarantee a stable arrangement of nerve fibres and melanophores.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号