首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycobacterium sp. strains CP1, CP2, CFt2 and CFt6 were isolated from creosote-contaminated soil due to their ability to grow in pyrene (CP1 and CP2) or fluoranthene (CFt2 and CFt6). All these strains utilized fluoranthene as a sole source of carbon and energy. Strain CP1 exhibited the best growth, with a cellular assimilation of fluoranthene carbon of approximately 45%. Identification of the metabolites accumulated during growth in fluoranthene, the kinetics of metabolites, and metabolite feeding studies, indicated that all these isolates oxidized fluoranthene by the following two routes: the first involves dioxygenation at C-1 and C-2, meta cleavage, and a 2-carbon fragment excision to produce 9-fluorenone-1-carboxylic acid. An angular dioxygenation of the latter yields cis-1,9a-dihydroxy-1-hydrofluorene-9-one-8-carboxylic acid, which is further degraded via 8-hydroxy-3,4-benzocoumarin-1-carboxylic acid, benzene-1,2,3-tricarboxylic acid, and phthalate; the second route involves dioxygenation at C-2 and C-3 and ortho cleavage to give Z-9-carboxymethylenefluorene-1-carboxylic acid. In addition, the pyrene-degrading strains CP1 and CP2 possess a third route initiated by dioxygenation at positions C-7 and C-8, which—following meta cleavage, an aldolase reaction, and a C1-fragment excision—yields acenaphthenone. Monooxygenation of this ketone to the corresponding quinone, and its subsequent hydrolysis, produces naphthalene-1,8-dicarboxylic acid. The results obtained in this study not only complete and confirm the three fluoranthene degradation routes previously proposed for the pyrene-degrading strain Mycobacterium sp. AP1, but also suggest that such routes represent general microbial processes for environmental fluoranthene removal.  相似文献   

2.
Mycobacterium vanbaalenii PYR-1 is capable of degrading a wide range of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including fluoranthene. We used a combination of metabolomic, genomic, and proteomic technologies to investigate fluoranthene degradation in this strain. Thirty-seven fluoranthene metabolites including potential isomers were isolated from the culture medium and analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-visible absorption. Total proteins were separated by one-dimensional gel and analyzed by liquid chromatography-tandem mass spectrometry in conjunction with the M. vanbaalenii PYR-1 genome sequence (http://jgi.doe.gov), which resulted in the identification of 1,122 proteins. Among them, 53 enzymes were determined to be likely involved in fluoranthene degradation. We integrated the metabolic information with the genomic and proteomic results and proposed pathways for the degradation of fluoranthene. According to our hypothesis, the oxidation of fluoranthene is initiated by dioxygenation at the C-1,2, C-2,3, and C-7,8 positions. The C-1,2 and C-2,3 dioxygenation routes degrade fluoranthene via fluorene-type metabolites, whereas the C-7,8 routes oxidize fluoranthene via acenaphthylene-type metabolites. The major site of dioxygenation is the C-2,3 dioxygenation route, which consists of 18 enzymatic steps via 9-fluorenone-1-carboxylic acid and phthalate with the initial ring-hydroxylating oxygenase, NidA3B3, oxidizing fluoranthene to fluoranthene cis-2,3-dihydrodiol. Nonspecific monooxygenation of fluoranthene with subsequent O methylation of dihydroxyfluoranthene also occurs as a detoxification reaction.  相似文献   

3.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

4.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

5.
Seo JS  Keum YS  Hu Y  Lee SE  Li QX 《Biodegradation》2007,18(1):123-131
Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6-␣and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.  相似文献   

6.
Aims:  The metabolism of phenanthrene and anthracene by a moderate thermophilic Nocardia otitidiscaviarum strain TSH1 was examined.
Methods and Results:  When strain TSH1 was grown in the presence of anthracene, four metabolites were identified as 1,2-dihydroxy-1,2-dihydroanthracene, 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, 2,3-dihydroxynaphthalene and benzoic acid using gas chromatography-mass spectrometry (GC-MS), reverse phase-high performance liquid chromatography (RP-HPLC) and thin-layer chromatography (TLC). Degradation studies with phenanthrene revealed 2,2'-diphenic acid, phthalic acid, 4-hydroxyphenylacetic acid, o -hydroxyphenylacetic acid, benzoic acid, a phenanthrene dihydrodiol, 4-[1-hydroxy(2-naphthyl)]-2-oxobut-3-enoic acid and 1-hydroxy-2-naphthoic acid (1H2NA), as detectable metabolites.
Conclusions:  Strain TSH1 initiates phenanthrene degradation via dioxygenation at the C-3 and C-4 or at C-9 and C-10 ring positions. Ortho -cleavage of the 9,10-diol leads to formation of 2,2'-diphenic acid. The 3,4-diol ring is cleaved to form 1H2NA which can subsequently be degraded through o -phthalic acid pathway. Benzoate does not fit in the previously published pathways from mesophiles. Anthracene metabolism seems to start with a dioxygenation at the 1 and 2 positions and ortho -cleavage of the resulting diol. The pathway proceeds probably through 2,3-dicarboxynaphthalene and 2,3-dihydroxynaphthalene. Degradation of 2,3-dihydroxynaphthalene to benzoate and transformation of the later to catechol is a possible route for the further degradation of anthracene.
Significance and Impact of the Study:  For the first time, metabolism of phenanthrene and anthracene in a thermophilic Nocardia strain was investigated.  相似文献   

7.
When incubated with a creosote-polycyclic aromatic hydrocarbons (PAHs) mixture, the pyrene-degrading strain Mycobacterium sp. AP1 acted on three- and four-ring components, causing the simultaneous depletion of 25% of the total PAHs in 30 days. The kinetics of disappearance of individual PAHs was consistent with differences in aqueous solubility. During the incubation, a number of acid metabolites indicative of distinctive reactions carried out by high-molecular-weight PAH-degrading mycobacteria accumulated in the medium. Most of these metabolites were dicarboxylic aromatic acids formed as a result of the utilization of growth substrates (phenanthrene, pyrene, or fluoranthene) by multibranched pathways including meta- and ortho-ring-cleavage reactions: phthalic acid, naphthalene-1,8-dicarboxylic acid, phenanthrene-4,5-dicarboxylic acid, diphenic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid, and 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid. Others were dead-end products resulting from cometabolic oxidations on nongrowth substrates (fluorene meta-cleavage product). These results contribute to the general knowledge of the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted soils. The identification of the partially oxidized compounds will facilitate to develop analytical methods to determine their potential formation and accumulation in contaminated sites. An erratum to this article can be found at  相似文献   

8.
Sinorhizobium sp. C4 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, HI, USA. This isolate can utilize phenanthrene as a sole carbon source. Sixteen metabolites of phenanthrene were isolated and identified, and the metabolic map was proposed. Degradation of phenanthrene was initiated by dioxygenation on 1,2- and 3,4-C, where the 3,4-dioxygenation was dominant. Subsequent accumulation of 5,6- and 7,8-benzocoumarins confirmed dioxygenation on multiple positions and extradiol cleavage of corresponding diols. The products were further transformed to 1-hydroxy-2-naphthoic acid and 2-hydroxy-1-naphthoic acid then to naphthalene-1,2-diol. In addition to the typical degradation pathways, intradiol cleavage of phenanthrene-3,4-diol was proposed based on the observation of naphthalene-1,2-dicarboxylic acid. Degradation of naphthalene-1,2-diol proceeded through intradiol cleavage to produce trans-2-carboxycinnamic acid. Phthalic acid, 4,5-dihydroxyphthalic acid, and protocatechuic acid were identified as probable metabolites of trans-2-carboxycinnamic acid, but no trace salicylic acid or its metabolites were found. This is the first detailed study of PAH metabolism by a Sinorhizobium species. The results give a new insight into microbial degradation of PAHs.  相似文献   

9.
Summary The degradation of fluoranthene by pure cultures of Alcaligenes denitrificanss WW1, isolated from contaminated soil samples, was investigated. The strain showed maximum degradation rates of 0.3 mg fluoranthene/ml per day. A denitrificans was able to utilize also naphthalene, 1- and 2-methylnaphthalene, phenanthrene, and anthracene as sole carbon sources and to co-metabolize fuuorence, pyrene, and benzo(a)anthracene. During growth on fluoranthene in batch culture two metabolic products that were completely degraded before growth entered the stationary phase were detected in the culture fluid. Anslyses by UV, mass and NMR spectroscopy identified the products as acenaphthenone and 3-hydroxymethyl-4,5-benzocoumarine. Fluoranthene-grown resting cells of A. denitrificans showed degradative activity towards 2,3-dihydroxybenzoic acid, pyrogallol, salicylic acid, and catechol. The enzymatic activities in extracts of fluoranthene-induced cells indicate a meta ring fission involved in the degradation of fluoranthene. From these data new aspects of the biodegradative pathway of fluoranthene have been predicted.  相似文献   

10.
A pathway for the biotransformation of the environmental pollutant and high‐molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)‐MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four‐, three‐ and two‐aromatic ring products. The structurally similar four‐ and three‐ring non‐alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)‐MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho‐cleavage of 8,9‐dihydroxy‐benzo[k]fluoranthene to 8‐carboxyfluoranthenyl‐9‐propenic acid and 9‐hydroxy‐fluoranthene‐8‐carboxylic acid, and was followed by meta‐cleavage to produce 3‐(2‐formylacenaphthylen‐1‐yl)‐2‐hydroxy‐prop‐2‐enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three‐ring product, 2‐formylacenaphthylene‐1‐carboxylic acid. Production of key downstream metabolites, 1,8‐naphthalic anhydride and 1‐naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium.  相似文献   

11.
Fluoranthene degradation in Pseudomonas alcaligenes PA-10   总被引:2,自引:0,他引:2  
Gordon L  Dobson AD 《Biodegradation》2001,12(6):393-400
Pseudomonas alcaligenes strain PA-10 degrades thefour-ring polycyclic aromatic hydrocarbon fluoranthene, co-metabolically. HPLC analysisof the growth medium identified four intermediates, 9-fluorenone-1-carboxylicacid; 9-hydroxy-1-fluorene carboxylic acid; 9-fluorenone and 9-fluorenol, formedduring fluoranthene degradation. Pre-exposure of PA-10 to 9-fluorenone-1-carboxylic acidand 9-hydroxy-1-fluorene-carboxylic acid resulted inincreases in fluoranthene removal, while pre-exposure to9-fluorenone and 9-fluorenol resulted in a decrease influoranthene degradation. The rate of indole transformation was similarly affected by pre-exposureto these metabolic intermediates, indicating a link between fluoranthenedegradation and indigo formation in this strain.  相似文献   

12.
In this study, strain MQ belonging to the genera Comamonas was used to cometabolically degrade dibenzofuran (DBF) with naphthalene, phenanthrene, benzene, toluene, biphenyl and nitrobenzene, respectively, for the first time. Strain MQ could cometabolically degrade DBF in the growing system using naphthalene as a substrate and the Ki value of strain MQ on naphthalene and DBF was 90.26 mg L?1 and 68.34 mg L?1, respectively. The degradation rate of DBF by naphthalene-cultivated strain MQ cells (0.080 mmol L?1 h?1) was 1.05, 1.11, 1.13, 1.18 and 1.27-fold higher than that cultivated by phenanthrene, benzene, toluene, biphenyl and nitrobenzene, respectively. Examination of metabolites indicated that naphthalene-cultivated strain MQ cells degraded DBF to 2-hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid (HOBB) and subsequently to salicylic acid via the lateral dioxygenation and meta cleavage pathway. In contrast, biphenyl-cultivated strain MQ cells degraded DBF to monohydroxydibenzofuran through the lateral dioxygenation without meta cleavage pathway. These results suggested that strain MQ could be useful in the bioremediation of environments contaminated by heterocyclic compounds mixtures with polycyclic aromatic hydrocarbons.  相似文献   

13.
Alcaligenes sp. strain O-1 grew with benzene sulfonate (BS) as sole carbon source for growth with either NH4 + or NH4 + plus orthanilate (2-aminobenzene sulfonate, OS) as the source(s) of nitrogen. The intracellular desulfonative enzyme did not degrade 3- or 4-aminobenzene sulfonates in the medium, although the enzyme in cell extracts degraded these compounds. We deduce the presence of a selective permeability barrier to sulfonates and conclude that the first step in sulfonate metabolism is transport into the cell. Cell-free desulfonation of BS in standard reaction mixtures required 2 mol of O2 per mol. One mol of O2 was required for a catechol 2,3-dioxygenase. When meta ring cleavage was inhibited with 3-chlorocatechol in desalted extracts, about 1 mol each of O2 and of NAD(P)H per mol of BS were required for the reaction, and SO3 2- and catechol were recovered in high yield. Catechol was shown to be formed by dioxygenation in an experiment involving 18O2. 4-Toluene sulfonate was subject to NAD(P)H-dependent dioxygenation to yield SO3 2- and 4-methylcatechol, which was subject to meta cleavage. OS also required 2 mol of O2 per mol and NAD(P)H for degradation, and SO3 2- and NH4 + were recovered quantitatively. Inhibition of ring cleavage with 3-chrorocatechol reduced the oxygen requirement to 1 mol per mol of OS SO3 2- (1 mol) and an unidentified organic intermediate, but no NH4 +, were observed.  相似文献   

14.
The degradation pathways for cyclic alkanes (c-alkanes) in Rhodococcus sp. NDKK48 were investigated. Strain NDKK48 used dodecylcyclohexane as a sole carbon and energy source, and five metabolites in the dodecylcyclohexane degradation pathway were detected by gas-chromatography/mass spectra. The metabolites were identified as cyclohexanecarboxylic acid, cyclohexylacetic acid, 1-cyclohexene-1-acetic acid, 4-dodecylcyclohexanol, and 4-dodecylcyclohexanone. The strain degrades dodecylcyclohexane via a ring oxidation pathway and an alkyl side chain oxidation pathway. Cyclohexanecarboxylic acid was further oxidized to muconic acid via 1-cyclohexene-1-carboxylic acid and benzoic acid, and the muconic acid was finally used by strain NDKK48 for growth. Methylcyclohexane and cyclohexane were co-oxidized with hexadecane by strain NDKK48. Methylcyclohexane was degraded via a ring oxidation pathway, and the degradation pathway contained part of the Baeyer-Villiger oxidation for ring cleavage. Cyclohexane was also degraded by the same pathway as methylcyclohexane. Thus, strain NDKK48 has two pathways for the complete degradation of c-alkanes.  相似文献   

15.
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was previously reported to oxidize 2-naphthoic acid and 4-ethylbenzoic acid. In this study, we examined the substrate specificity and regioselectivity of CYP199A2 towards indole- and quinolinecarboxylic acids. The CYP199A2 gene was coexpressed with palustrisredoxin gene from R. palustris and putidaredoxin reductase gene from Pseudomonas putida to provide the redox partners of CYP199A2 in Escherichia coli. Following whole-cell assays, reaction products were identified by mass spectrometry and NMR spectroscopy. CYP199A2 did not exhibit any activity towards indole and indole-3-carboxylic acid, whereas this enzyme oxidized indole-2-carboxylic acid, indole-5-carboxylic acid, and indole-6-carboxylic acid. Indole-2-carboxylic acid was converted to 5- and 6-hydroxyindole-2-carboxylic acids at a ratio of 59:41. In contrast, the indole-6-carboxylic acid oxidation generated only one product, 2-indolinone-6-carboxylic acid, at a rate of 130 mol (mol P450)−1 min−1. Furthermore, CYP199A2 also oxidized quinoline-6-carboxylic acid, although this enzyme did not exhibit any activity towards quinoline and its derivatives with a carboxyl group at the C-2, C-3, or C-4 positions. The oxidation product of quinoline-6-carboxylic acid was identified to be 3-hydroxyquinoline-6-carboxylic acid, which was a novel compound. These results suggest that CYP199A2 may be a valuable biocatalyst for the regioselective oxidation of various aromatic carboxylic acids.  相似文献   

16.
The microbial degradation of hard coal implies the cleavage of diaryl ether linkages in the coal macromolecule. We investigated the biodegradation of diphenylether as a model compound representing this substructure of coal. A bacterial strain isolated from soil and identified as Pseudomonas cepacia, was able to grow with diphenylether as sole source of carbon. During microbial growth, three metabolites were detected in the culture supernatant by high pressure liquid chromatography. As product of ring hydroxylation and subsequent rearomatization, 2,3-dihydroxydiphenylether was identified by UV, mass and nuclear magnetic resonance spectrometry and gas chromatography analyses. The cleavage of the ether linkage led to the formation of phenol and 2-pyrone-6-carboxylic acid, the latter being not further degraded by Pseudomonas cepacia. The possible cleavage mechanism of the ether linkage is discussed.Non-standard abbreviations DPE diphenylether - PCA 2-pyrone-6-carboxylic acid - GC gas chromatography - MS mass spectrometry - HPLC high pressure liquid chromatography  相似文献   

17.
Carbazole 1,9a-dioxygenase (CARDO) consists of terminal oxygenase (CARDO-O) and electron transport components. CARDO can catalyze specific oxygenation for various substrates: angular dioxygenation for carbazole and dibenzo-p-dioxin, lateral dioxygenation for anthracene, and monooxygenation for methylene carbon of fluorene and sulfide sulfur of dibenzothiophene. To elucidate the molecular mechanism determining its unique substrate specificity, 17 CARDO-O site-directed mutants at amino acid residues I262, F275, Q282, and F329, which form the substrate-interacting wall around the iron active site by CARDO-O crystal structure, were generated and characterized. F329 replacement dramatically reduced oxygenation activity. However, several mutants produced different products from the wild-type enzyme to a large extent: I262V and Q282Y (1-hydroxycarbazole), F275W (4-hydroxyfluorene), F275A (unidentified cis-dihydrodiol of fluoranthene), and I262A and I262W (monohydroxydibenzothiophenes). These results suggest the possibility that the respective substrates bind to the active sites of CARDO-O mutants in a different orientation from that of the wild-type enzyme.  相似文献   

18.
Lignin-based aromatics are attractive raw materials to derive medium-chain length poly(3-hydroxyalkanoates) (mcl-PHAs), biodegradable polymers of commercial value. So far, this conversion has exclusively used the ortho-cleavage route of Pseudomonas putida KT2440, which results in the secretion of toxic intermediates and limited performance. Pseudomonas putida H exhibits the ortho- and the meta-cleavage pathways where the latter appears promising because it stoichiometrically yields higher levels of acetyl-CoA. Here, we created a double-mutant H-ΔcatAΔA2 that utilizes the meta route exclusively and synthesized 30% more PHA on benzoate than the parental strain but suffered from catechol accumulation. The single deletion of the catA2 gene in the H strain provoked a slight attenuation on the enzymatic capacity of the ortho route (25%) and activation of the meta route by nearly 8-fold, producing twice as much mcl-PHAs compared to the wild type. Inline, the mutant H-ΔcatA2 showed a 2-fold increase in the intracellular malonyl-CoA abundance – the main precursor for mcl-PHAs synthesis. As inferred from flux simulation and enzyme activity assays, the superior performance of H-ΔcatA2 benefited from reduced flux through the TCA cycle and malic enzyme and diminished by-product formation. In a benzoate-based fed-batch, P. putida H-ΔcatA2 achieved a PHA titre of 6.1 g l–1 and a volumetric productivity of 1.8 g l–1 day–1. Using Kraft lignin hydrolysate as feedstock, the engineered strain formed 1.4 g l- 1 PHA. The balancing of carbon flux between the parallel catechol-degrading routes emerges as an important strategy to prevent intermediate accumulation and elevate mcl-PHA production in P. putida H and, as shown here, sets the next level to derive this sustainable biopolymer from lignin hydrolysates and aromatics.  相似文献   

19.
Degradation of halogenated aromatic compounds   总被引:5,自引:1,他引:4  
Due to their persistence, haloaromatics are compounds of environmental concern. Aerobically, bacteria degrade these compounds by mono- or dioxygenation of the aromatic ring. The common intermediate of these reactions is (halo)catechol. Halocatechol is cleaved either intradiol (ortho-cleavage) or extradiol (meta-cleavage). In contrast to ortho-cleavage, meta-cleavage of halocatechols yields toxic metabolites. Dehalogenation may occur fortuitously during oxygenation. Specific dehalogenation of aromatic compounds is performed by hydroxylases, in which the halo-substituent is replaced by a hydroxyl group. During reductive dehalogenation, haloaromatic compounds may act as electron-acceptors. Herewith, the halosubstituent is replaced by a hydrogen atom.Abbreviations CBz chlorobenzene - DCBz dichlorobenzene - TrCBz trichlorobenzene - TCBz tetrachlorobenzene - PCBz pentachlorobenzene - HCBz hexachlorobenzene - CBA chlorobenzoic acid - BBA bromobenzoic acid - FBA fluorobenzoic acid - IBA iodobenzoic acid - CP chlorophenol - CA chloroaniline - PCBs polychlorinated biphenyls - CB chlorobiphenyl - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid  相似文献   

20.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds. These compounds are degraded via vanillate and syringate by a unique enzymatic system, composed of etherases, O demethylases, ring cleavage oxygenases and side chain cleaving enzymes. These unique and specific lignin modification enzymes are thought to be powerful tools for utilization of the most abundant aromatic biomass, lignin. Here, we focus on the genes and enzymes involved in β-aryl ether cleavage and biphenyl degradation. Two unique etherases are involved in the reductive cleavage of β-aryl ether. These two etherases have amino acid sequence similarity with the glutathione S-transferases, and use glutathione as a hydrogen donor. It was found that 5,5′-dehydrodivanillate, which is a typical lignin-related biphenyl structure, was transformed into 5-carboxyvanillate by the reaction sequence of O-demethylation, meta-ring cleavage, and hydrolysis, and the genes involved in the latter two reactions have been characterized. Vanillate and syringate are the most common intermediate metabolites in lignin catabolism. These compounds are initially O-demethylated and the resulting diol compounds, protocatechuate (PCA) and 3-O-methylgallate, respectively, are subjected to ring cleavage catalyzed by PCA 4,5-dioxygenase. The ring cleavage products generated are further degraded through the PCA 4,5-cleavage pathway. We have isolated and characterized genes for enzymes involved in this pathway. Disruption of a gene for 2-pyrone-4,6-dicarboxylate hydrolase (ligI) in this pathway suggested that an alternative route for 3-O-methylgallate degradation, in which ligI is not involved, would play a role in syringate catabolism. In this article, we describe the genetic and biochemical features of the S. paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. A possible application of the SYK-6 lignin degradation system to produce a valuable chemical material is also described. Received 01 May 1999/ Accepted in revised form 29 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号