首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a preliminary to the understanding of the function of the highly conserved Escherichia coli heat shock protein HtpG, the protein was purified and partially characterized. The htpG gene was subcloned into the inducible expression vector, pT7-6. Upon induction, the HtpG protein accumulated to approximately 30% of the total protein in the cell. A purification scheme was devised which involved column chromatography on DEAE-cellulose, hydroxylapatite, and Sephacryl S-200. The amino acid composition of the purified protein corresponded closely with the predicted amino acid composition derived from the DNA sequence, and the sequence of the 8 amino-terminal residues matched the predicted sequence exactly. The molecular weight of the denatured protein is 65,500 and the native molecular weight is 144,620, as calculated by using both the Stokes radius and the sedimentation coefficient. As the molecular weight predicted from the DNA sequence is 71,429, this indicates the HtpG protein is a dimer. The HtpG protein was found to be a phosphoprotein. Thus, HtpG is structurally similar to its eukaryotic homologue, hsp83, which is also a phosphoprotein and a dimer.  相似文献   

2.
The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.  相似文献   

3.
Facile diffusion of globular proteins within a cytoplasm that is dense with biopolymers is essential to normal cellular biochemical activity and growth. Remarkably, Escherichia coli grows in minimal medium over a wide range of external osmolalities (0.03 to 1.8 osmol). The mean cytoplasmic biopolymer volume fraction ((phi)) for such adapted cells ranges from 0.16 at 0.10 osmol to 0.36 at 1.45 osmol. For cells grown at 0.28 osmol, a similar phi range is obtained by plasmolysis (sudden osmotic upshift) using NaCl or sucrose as the external osmolyte, after which the only available cellular response is passive loss of cytoplasmic water. Here we measure the effective axial diffusion coefficient of green fluorescent protein (D(GFP)) in the cytoplasm of E. coli cells as a function of (phi) for both plasmolyzed and adapted cells. For plasmolyzed cells, the median D(GFP) (D(GFP)(m)) decreases by a factor of 70 as (phi) increases from 0.16 to 0.33. In sharp contrast, for adapted cells, D(GFP)(m) decreases only by a factor of 2.1 as (phi) increases from 0.16 to 0.36. Clearly, GFP diffusion is not determined by (phi) alone. By comparison with quantitative models, we show that the data cannot be explained by crowding theory. We suggest possible underlying causes of this surprising effect and further experiments that will help choose among competing hypotheses. Recovery of the ability of proteins to diffuse in the cytoplasm after plasmolysis may well be a key determinant of the time scale of the recovery of growth.  相似文献   

4.
ClpB is the Escherichia coli heat shock protein F84.1.   总被引:24,自引:12,他引:12       下载免费PDF全文
  相似文献   

5.
The clpB gene in Escherichia coli encodes a heat-shock protein that is a close homolog of the clpA gene product. The latter is the ATPase subunit of the multimeric ATP-dependent protease Ti (Clp) in E. coli, which also contains the 21-kDa proteolytic subunit (ClpP). The clpB gene product has been purified to near homogeneity by DEAE-Sepharose and heparin-agarose column chromatographies. The purified ClpB consists of a major 93-kDa protein and a minor 79-kDa polypeptide as analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Upon gel filtration on a Superose-6 column, it behaves as a 350-kDa protein. Thus, ClpB appears to be a tetrameric complex of the 93-kDa subunit. The purified ClpB has ATPase activity which is stimulated 5-10-fold by casein. It is also activated by insulin, but not by other proteins, including globin and denatured bovine serum albumin. ClpB cleaves adenosine 5'-(alpha,beta-methylene)-triphosphate as rapidly as ATP, but not adenosine 5'-(beta,gamma-methylene)-triphosphate. GTP, CTP, and UTP are hydrolyzed 15-25% as well as ATP. ADP strongly inhibits ATP hydrolysis with a Ki of 34 microM. ClpB has a Km for ATP of 1.1 mM, and casein increases its Vmax for ATP without affecting its Km. A Mg2+ concentration of 3 mM is necessary for half-maximal ATP hydrolysis. Mn2+ supports ATPase activity as well as Mg2+, and Ca2+ has about 20% their activity. Anti-ClpB antiserum does not cross-react with ClpA nor does anti-ClpA antiserum react with ClpB. In addition, ClpB cannot replace ClpA in supporting the casein-degrading activity of ClpP. Thus, ClpB is distinct from ClpA in its structural and biochemical properties despite the similarities in their sequences.  相似文献   

6.
Dinucleotide AppppA (5',5''-P1,P4-diadenosine tetraphosphate) is rapidly synthesized in Escherichia coli cells during heat shock. apaH mutants lack AppppN hydrolase activity and, therefore, contain constitutively levels of AppppA, which affect several cellular processes. However, the precise role of AppppA remains undetermined. Photo-crosslinking experiments with radioactively labelled azido-AppppA have shown that a number of proteins, including heat shock proteins DnaK and GroEL, specifically bind to AppppA. Several other unidentified proteins (C40, C45, and E89) also bind strongly to AppppA. In this work, we have identified the AppppA-binding protein E89 as heat shock protein ClpB. In addition, since ClpB belongs to a family of proteins implicated in proteolysis, we have examined the effects of apaH mutants on protein degradation. Constitutively elevated levels of AppppA stimulate lon-independent proteolysis only in heat-shocked cells. We also show that overproduction of ClpB from a plasmid rescues apaH mutants from sensitivity to killing by heat.  相似文献   

7.
SecD and SecF facilitate protein export in Escherichia coli.   总被引:18,自引:10,他引:8       下载免费PDF全文
We show here that the rate of protein translocation in the bacterium Escherichia coli depends on the levels of the SecD and SecF proteins in the cell. Overexpression of SecD and SecF stimulates translocation in wild type cells and improves export of proteins with mutant signal sequences. Depletion of SecD and SecF from the cell greatly reduces but does not abolish protein translocation. A secDF::kan null mutant deleted for the genes encoding both proteins is cold-sensitive for growth and protein export, has a severe export defect at 37 degrees C and is barely viable. The phenotypes of a secD null mutant and a secF null mutant are identical to the secDF::kan double null mutant. These results partially resolve the conflict between genetic studies and results from in vitro translocation systems which do not require SecD and SecF for activity, affirm the importance of these proteins to the export process, and suggest that SecD and SecF function together to stimulate protein export in a role fundamentally different from other Sec proteins. Our results provide additional support for the notion that an early step in protein export is cold-sensitive.  相似文献   

8.
Cells of Escherichia coli K-12 were stressed by heating at 48 degrees C or by acid treatment at pH 4.2 for periods up to 1h. The addition of catalase to the selective medium increased the count of heat-stressed cells by 2.3-fold and acid-stressed cells by 4.8-fold. However, these values represented only a small percentage (3% for heat-stressed and 6% for acid-stressed cells respectively) of the population of injured but still viable cells. The addition of mannitol to the selective medium used to count acid-stressed cells did not increase the count. Whilst the presence of H2O2 in media may cause significant errors in the estimation of E. coli in certain situations these errors are unlikely to be significant in physiological studies of populations of cells injured by stress.  相似文献   

9.
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.  相似文献   

10.
Silent mutations affect in vivo protein folding in Escherichia coli   总被引:1,自引:0,他引:1  
As an approach to investigate the molecular mechanism of in vivo protein folding and the role of translation kinetics on specific folding pathways, we made codon substitutions in the EgFABP1 (Echinococcus granulosus fatty acid binding protein1) gene that replaced five minor codons with their synonymous major ones. The altered region corresponds to a turn between two short alpha helices. One of the silent mutations of EgFABP1 markedly decreased the solubility of the protein when expressed in Escherichia coli. Expression of this protein also caused strong activation of a reporter gene designed to detect misfolded proteins, suggesting that the turn region seems to have special translation kinetic requirements that ensure proper folding of the protein. Our results highlight the importance of codon usage in the in vivo protein folding.  相似文献   

11.
With the emergence of multifaceted bioinformatics-derived data, it is becoming possible to merge biochemical and physiological information to develop a new level of understanding of the metabolic complexity of the cell. The biosynthetic pathway of de novo pyrimidine nucleotide metabolism is an essential capability of all free-living cells, and it occupies a pivotal position relative to metabolic processes that are involved in the macromolecular synthesis of DNA, RNA and proteins, as well as energy production and cell division. This regulatory network in all enteric bacteria involves genetic, allosteric, and physiological control systems that need to be integrated into a coordinated set of metabolic checks and balances. Allosterically regulated pathways constitute an exciting and challenging biosynthetic system to be approached from a mathematical perspective. However, to date, a mathematical model quantifying the contribution of allostery in controlling the dynamics of metabolic pathways has not been proposed. In this study, a direct, rigorous mathematical model of the de novo biosynthesis of pyrimidine nucleotides is presented. We corroborate the simulations with experimental data available in the literature and validate it with derepression experiments done in our laboratory. The model is able to faithfully represent the dynamic changes in the intracellular nucleotide pools that occur during metabolic transitions of the de novo pyrimidine biosynthetic pathway and represents a step forward in understanding the role of allosteric regulation in metabolic control.  相似文献   

12.
Stereochemistry could be a powerful variable for conformational tune up of polypeptides for de novo design. It may be also useful probe of possible role of interamide energetics in selection and stabilization of conformation. The homopolypeptides Ac-Xxx30-NHMe, with Xxx = Ala, Val, and Leu, of diversified stereochemical structure are generated by simulated racemization with a modified GROMOS-96 force field. The polypeptides, and other systematic stereochemical variants, are folded by simulated annealing with another modified GROMOS-96 force field under the dielectric constant values 1, 4, and 10. The resultant 15,000 molecular folds of isotactic (poly-L-chiral), syndiotactic (alternating L,D-chiral), and heterotactic (random-L,D-chiral) stereochemical structure, belonging to three polypeptide series, achieved under three different folding conditions, are assessed statistically for structure-to-energy-to-conformation relationship. The results suggest that interamide electrostatics could be a major factor in secondary-structure selection in polypeptides while main-chain stereochemistry could dictate molecular packing and therefore the relative magnitude of hydrogen-bond and Lennard-Jones (LJ) contributions in conformational energy. A method for computational design of heterotactic molecular folds in polypeptide structure has been developed, and the first road map for a chiral tune up of polypeptide structure based on stereochemical engineering has been laid down. Broad implications for protein structure, folding, and de novo design are briefly discussed.  相似文献   

13.
Self-association of ClpB (a mixture of 95- and 80-kDa subunits) has been studied with gel filtration chromatography, analytical ultracentrifugation, and electron microscopy. Monomeric ClpB predominates at low protein concentration (0.07 mg/mL), while an oligomeric form is highly populated at >4 mg/mL. The oligomer formation is enhanced in the presence of 2 mM ATP or adenosine 5'-O-thiotriphosphate (ATPgammaS). In contrast, 2 mM ADP inhibits full oligomerization of ClpB. The apparent size of the ATP- or ATPgammaS-induced oligomer, as determined by gel filtration, sedimentation velocity and electron microscopy image averaging, and the molecular weight, as determined by sedimentation equilibrium, are consistent with those of a ClpB hexamer. These results indicate that the oligomerization reactions of ClpB are similar to those of other Hsp100 proteins.  相似文献   

14.
The heat-shock protein ClpB is a protein-activated ATPase that is essential for survival of Escherichia coli at high temperatures. ClpB has also recently been suggested to function as a chaperone in reactivation of aggregated proteins. In addition, the clpB gene has been shown to contain two translational initiation sites and therefore encode two polypeptides of different size. To determine the structural organization of ClpB, the ClpB proteins were subjected to chemical cross-linking analysis and electron microscopy. The average images of the ClpB proteins with end-on orientation revealed a seven-membered, ring-shaped structure with a central cavity. Their side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since the ClpB subunit has two large regions containing consensus sequences for nucleotide binding, each layer of the ClpB heptamer appears to represent the side projection of one of the major domains arranged on a ring. In the absence of salt and ATP, the ClpB proteins showed a high tendency to form a heptamer. However, they dissociated into various species of oligomers with smaller sizes, depending on salt concentration. Above 0.2 M NaCl, the ClpB proteins behaved most likely as a monomer in the absence of ATP, but assembled into a heptamer in its presence. Furthermore, mutations of the first ATP-binding site, but not the second site, prevented the ATP-dependent oligomerization of the ClpB proteins in the presence of 0.3 M NaCl. These results indicate that ClpB has a heptameric ring-shaped structure with a central cavity and this structural organization requires ATP binding to the first nucleotide-binding site localized to the N-terminal half of the ATPase.  相似文献   

15.
The Escherichia coli molecular chaperone protein ClpB is a member of the highly conserved Hsp100/Clp protein family. Previous studies have shown that the ClpB protein is needed for bacterial thermotolerance. Purified ClpB protein has been shown to reactivate chemically and heat-denatured proteins. In this work we demonstrate that the combined action of ClpB and the DnaK, DnaJ, and GrpE chaperones leads to the activation of DNA replication of the broad-host-range plasmid RK2. In contrast, ClpB is not needed for the activation of the oriC-dependent replication of E. coli. Using purified protein components we show that the ClpB/DnaK/DnaJ/GrpE synergistic action activates the plasmid RK2 replication initiation protein TrfA by converting inactive dimers to an active monomer form. In contrast, Hsp78/Ssc1/Mdj1/Mge1, the corresponding protein system from yeast mitochondria, cannot activate the TrfA replication protein. Our results demonstrate for the first time that the ClpB/DnaK/DnaJ/GrpE system is involved in protein monomerization and in the activation of a DNA replication factor.  相似文献   

16.
ClpB proteins copurify with the anaerobic Escherichia coli reductase   总被引:1,自引:0,他引:1  
Two proteins, called alpha and beta 3, copurify with the anaerobic ribonucleotide reductase from Escherichia coli (Eliasson et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3314-3318). Both are now identified as products of the clpB gene that is presumed to code for a subunit of an ATP dependent protease. The tight associations suggest the possibility that the ClpB proteins are involved in the regulation of the anaerobic reductase.  相似文献   

17.
The Escherichia coli heat-shock protein ClpB reactivates protein aggregates in cooperation with the DnaK chaperone system. The ClpB N-terminal domain plays an important role in the chaperone activity, but its mechanism remains unknown. In this study, we investigated the effect of the ClpB N-terminal domain on malate dehydrogenase (MDH) refolding. ClpB reduced the yield of MDH refolding by a strong interaction with the intermediate. However, the refolding kinetics was not affected by deletion of the ClpB N-terminal domain (ClpBDeltaN), indicating that MDH refolding was affected by interaction with the N-terminal domain. In addition, the MDH refolding yield increased 50% in the presence of the ClpB N-terminal fragment (ClpBN). Fluorescence polarization analysis showed that this chaperone-like activity is explained best by a weak interaction between ClpBN and the reversible aggregate of MDH. The dissociation constant of ClpBN and the reversible aggregate was estimated as 45 muM from the calculation of the refolding kinetics. Amino acid substitutions at Leu 97 and Leu 110 on the ClpBN surface reduced the chaperone-like activity and the affinity to the substrate. In addition, these residues are involved in stimulation of ATPase activity in ClpB. Thus, Leu 97 and Leu 110 are responsible for the substrate recognition and the regulation of ATP-induced ClpB conformational change.  相似文献   

18.
We have constructed an Escherichia coli strain lacking the small heat shock proteins IbpA and IbpB and compared its growth and viability at high temperatures to those of isogenic cells containing null mutations in the clpA, clpB, or htpG gene. All mutants exhibited growth defects at 46°C, but not at lower temperatures. However, the clpA, htpG, and ibp null mutations did not reduce cell viability at 50°C. When cultures were allowed to recover from transient exposure to 50°C, all mutations except Δibp led to suboptimal growth as the recovery temperature was raised. Deletion of the heat shock genes clpB and htpG resulted in growth defects at 42°C when combined with the dnaK756 or groES30 alleles, while the Δibp mutation had a detrimental effect only on the growth of dnaK756 mutants. Neither the overexpression of these heat shock proteins nor that of ClpA could restore the growth of dnaK756 or groES30 cells at high temperatures. Whereas increased levels of host protein aggregation were observed in dnaK756 and groES30 mutants at 46°C compared to wild-type cells, none of the null mutations had a similar effect. These results show that the highly conserved E. coli small heat shock proteins are dispensable and that their deletion results in only modest effects on growth and viability at high temperatures. Our data also suggest that ClpB, HtpG, and IbpA and -B cooperate with the major E. coli chaperone systems in vivo.  相似文献   

19.
20.
Osmoprotectants exogenously supplied to a hyperosmotic culture medium are efficiently imported and amassed by stressed cells of Escherichia coli. In addition to their evident role in the recovery and maintenance of osmotic balance, these solutes should play an important role on the behavior of cellular macromolecules, for example in the process of protein folding. Using a random chemical mutagenesis approach, a conditional lysine auxotrophic mutant was obtained. The growth of this mutant was restored by addition of either lysine or osmoprotectants including glycine betaine (GB) in the minimal medium. The growth rate increased proportionally with the augmentation of the intracellular GB concentration. The mutation was located in the lysA gene and resulted in the substitution of the Ser at position 384 by Phe of the diaminopimelate decarboxylase (DAPDC), which catalyzes the conversion of meso-diaminopimelate to L-lysine. We purified both the wild type DAPDC and the mutated DAPDC-sf and demonstrated that GB was capable of activating DAPDC-sf in vitro, thus confirming the in vivo results. Most importantly, we showed that the activation was correlated with a conformational change of DAPDC-sf. Taken together, these results show, for the first time, that GB may actively assist in vivo protein folding in a chaperone-like manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号