首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In normal epidermis keratinocytes migrate upward from the basal layer as they undergo terminal differentiation, yet they also have the capacity for lateral movement during wound healing. The purpose of our experiments was to investigate these two types of movement by manipulating the calcium ion concentration of the medium so that keratinocytes formed monolayers (0.1 mM calcium) or stratified sheets (2.0 mM calcium). Time-lapse video recording indicated that keratinocytes in low-calcium medium were laterally more motile than keratinocytes in normal medium. This was consistent with the ultrastructural appearance of the cells and the lack of desmosomal junctions, determined by scanning and transmission electron microscopy. During calcium-induced stratification keratinocytes moved upward from the basal layer by gliding over their neighbors and forming contacts with other suprabasal cells. Keratinocytes in low-calcium medium migrated into wounds made in the cultures, a process which was inhibited by monensin; however, stratified keratinocytes in normal medium did not enter wounds. Cytochalasin D caused rapid cell rounding and disruption of actin filaments in keratinocytes grown in low-calcium but not in normal medium, indicating more rapid treadmilling of actin and consistent with the greater motility of keratinocytes in low-calcium medium. Our results suggest that desmosome formation may place constraints on the movement of individual keratinocytes and that the actomyosin cytoskeleton is involved in lateral migration.  相似文献   

2.
Calcium-induced assembly of adherens junctions in keratinocytes   总被引:11,自引:10,他引:1       下载免费PDF全文
Extracellular calcium concentration has been shown to control the stratification of cultured keratinocytes, presumably by regulation of formation of desmosomes. Previous studies have shown that keratinocytes cultured in medium containing 0.1 mM Ca++ form loose colonies without desmosomes. If the Ca++ is raised to 1 mM, desmosomes are assembled and the distribution of keratin filaments is altered. We have examined the disposition of vinculin and actin in keratinocytes under similar conditions. Using immunofluorescence microscopy we show that raising [Ca++] in the medium dramatically alters the distribution of vinculin and actin and results in the formation of adherens-type junctions within 15 min after switching to high calcium medium. Borders of cells at the edge of colonies, which are not proximal to other cells, are not affected, while cells in the interior of the colony form junctions around their periphery. Attachment plaques in keratinocytes grown in low calcium medium are located at the ventral plane of the cell, but junctions formed after switching to high calcium are not, as demonstrated by interference reflection microscopy. In cells colabeled with antibodies against vinculin and desmoplakin, vinculin-containing adherens junctions were visible before desmosomal junctions when cells were switched to high calcium. Although newly formed vinculin-containing structures in high calcium cells, like desmosomes, colocalize with phase-dense structures, superimposition of video fluorescence images using digitized fluorescence microscopy indicates that adherens junctions and desmosomes are discrete structures. Adherens junctions, like desmosomes, may play an essential role in controlling stratification of keratinocytes.  相似文献   

3.
Serine-palmitoyl transferase activity in cultured human keratinocytes   总被引:4,自引:0,他引:4  
Sphingolipids comprise approximately 25% of the stratum corneum lipids and are considered critical constituents of the epidermal permeability barrier. Whether sphingoid base structures are synthesized in the epidermis or whether they are derived from circulating or dermal sources is not known. We report here the initial characterization of serine-palmitoyl transferase (EC 2.3.1.50; SPT), the rate-limiting enzyme in the synthesis of sphingolipids, from cultured human neonatal keratinocytes. Subcellular fractionation studies demonstrated that 79% of the total cellular SPT activity was associated with the microsomes. The specific activity of keratinocyte SPT was 270 +/- 20 pmol/min per mg of microsomal protein, a level significantly higher than activities reported in other tissues. Keratinocyte SPT showed an apparent Km for L-serine of 0.40 (+/- 0.04 mM, with an alkaline pH optimum (8.2 +/- 0.4). Keratinocyte SPT utilizes palmitoyl-CoA preferentially over other saturated or unsaturated acyl-CoA substrates; increasing acyl-CoA chain lengths above C16 by one or two carbons was less detrimental to activity than similar decrements in chain length. Finally, the mechanism-based inhibitors L-cycloserine and beta-chloro-L-alanine, demonstrated potent inhibition of keratinocyte SPT activity, with 50% inhibitory concentrations of approximately 3.0 and 25 microM, respectively. In summary, we have found that cultured human neonatal keratinocytes contain unusually high levels of serine-palmitoyl transferase activity, and that the substrate specificity of keratinocyte SPT may determine the base composition of epidermal sphingolipids.  相似文献   

4.
Production of procollagenase by cultured human keratinocytes   总被引:4,自引:0,他引:4  
Using a collagen film assay utilizing 14C-labeled type I collagen, we demonstrated that cultured human keratinocytes produced a procollagenase after treatment with the tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). Production of collagenase paralleled alterations in cellular morphology induced by TPA. When procollagenase was immunoprecipitated with antibody to human fibroblast collagenase and analyzed on sodium dodecyl sulfate-polyacrylamide gels, the zymogen was revealed as a 56- and 51-kDa doublet. The keratinocyte-derived collagenase was a neutral metalloprotease, required activation with trypsin for detection in the collagenase assay and produced the characteristic three-quarter and one-quarter length collagen cleavage products when incubated with type I collagen at 25 degrees C. The enzyme was inhibited by serum and cysteine and was largely unaffected by serine, thiol, and carboxyl protease inhibitors. Cycloheximide inhibited the TPA-induced production of collagenase, suggesting that the procollagenase was not stored preformed in the keratinocytes. Keratinocytes treated with a tumor-promoting analogue of TPA also produced collagenase, but cells treated with cytochalasin B, interleukin-1, or two non-tumor promoting phorbol esters did not. Keratinocyte-derived collagenase may play a role in wound healing and morphogenesis.  相似文献   

5.
Desmosomes are cell junctions and cytoskeleton-anchoring structures of epithelia, the myocardium, and dendritic reticulum cells of lymphatic follicles whose major components are known. Using cultured HT-1080 SL-1 fibrosarcoma-derived cells and transfection of cDNAs encoding specific desmosomal components, we have determined a minimum ensemble of proteins sufficient to introduce de novo structures, which, by morphology and functional competence, are indistinguishable from authentic desmosomes. In a more refined analysis, the influence of the desmosomal proteins desmoplakin (Dp), plakoglobin (Pg), and plakophilin 2 (Pp2) on the lateral clustering of the desmosomal transmembrane-glycoprotein desmoglein 2 (Dsg) was examined. We found that for efficient clustering of desmoglein 2 and desmosome structure formation, all three major plaque proteins-desmoplakin, plakoglobin, and plakophilin 2- were necessary. Furthermore, in this cell model, plakophilin 2 was capable of directing desmoplakin to adhaerens junctions (AJ), whereas plakoglobin was crucial for the segregation of desmosomal and AJ components. These results are discussed with respect to the variability in cell junction composition observed in various nonepithelial tissues.  相似文献   

6.
Distribution of actin filaments of human epidermal keratinocyte in the primary culture was observed by immunofluorescence staining. In the cytoplasm, actin was distributed diffusely, and strong antiactin immunofluorescence was observed along the leading edge, showing ruffling and the contact zone to the neighboring cell. 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced organization of actin filaments. Many short bundles of actin filaments appeared shortly after the addition of 16 nM TPA, and large actin-containing ribbons of crescent-shape, circular or gyrus-like form were sometimes observed. Phorbol-12-13-diacetate, a non-promoter phorbol ester, induced a similar change, but to a much lesser extent. Addition of 1 mM cycloheximide did not interfere with the organization of actin filaments by TPA. La3+ aborted it completely possibly by replacing Ca2+ at the binding site of the cell surface, and the cultivation in low Ca2+ environment suppressed the effect of TPA. These findings make a contrast to those reported in fibroblasts, and may be linked to the characteristic response of cultured human keratinocytes to TPA in the proliferation of cells and induction of ornithine decarboxylase.  相似文献   

7.
Bioassay of retinoids using cultured human conjunctival keratinocytes   总被引:4,自引:0,他引:4  
The biological action of retinoids has been assayed using the differentiated properties of cultured human conjunctival keratinocytes. The effects measured were the suppression of envelope cross-linking and the promotion of synthesis of a keratin of molecular weight 40,000. Among the retinoids tested, the most powerful was the arotinoid Ro 13-6298, which reduced envelope formation detectably at 10(-11) M and by 90% at a concentration of 2 X 10(-10) M. The arotinoid was about 15 times more potent than trans-retinoic acid. The order of effectiveness of the retinoids in suppressing envelope cross-linking was the same as the order of effectiveness in promoting the synthesis of the 40-kd keratin.  相似文献   

8.
The radiosensitivity of cultured human and mouse keratinocytes   总被引:1,自引:0,他引:1  
Clonogenic survival assays after gamma-radiation in vitro were performed on freshly isolated and subcultured keratinocytes from mouse skin, mouse tongue and human skin. Survival curves were constructed by fitting the data to a multi-target model of cell survival. When subcultured, keratinocytes from all sites produced survival curves which showed a reduced shoulder region and an increased D0 when compared with their freshly isolated counterparts. Freshly isolated human skin keratinocytes were more radiosensitive than mouse keratinocytes from either skin or tongue.  相似文献   

9.
Vanilloid receptor subtype 1, VR1, is an ion channel that serves as a polymodal detector of pain-producing chemicals such as capsaicin and protons in primary afferent neurons. Here we showed that both capsaicin and acidification produced elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured human epidermal keratinocytes. The capsaicin- and acidification-evoked increases in [Ca(2+)](i) were inhibited by capsazepine, an antagonist to VR1. VR1-like immunoreactivity was observed in the cells. These findings suggest that functional VR1-like protein is present and functions as a sensor against noxious chemical stimuli, such as capsaicin or acidification, in epidermal keratinocytes.  相似文献   

10.
Human epidermis marks the interface between internal and external environments with the major task being to maintain body hydration. Alternating exposure of skin to a dry or humid environment is likely to cause changes in the epidermal water gradient resulting in osmotic alterations of epidermal keratinocytes. The present in vitro approach studied the effect of hypotonicity on cell-cell contact. It was demonstrated that hypotonic stress applied to human epithelial cells (HaCaT, A-431) induced upregulation of E-cadherin at both, the protein and mRNA level. 5'-deletional mutants of the E-cadherin promoter identified an element ranging from -53 to +31 that conveyed strong transactivation under hypotonic stress. In order to define relevant upstream regulators members of the MAP kinase family, the epidermal growth factor receptor (EGFR) and protein kinase B/Akt (PKB/Akt) were investigated. Hypotonic conditions led to a fast activation of ERK1/2, SAPK/JNK, p38, EGFR and PKB/Akt with distinct activation patterns. Experiments using specific inhibitors showed that p38 contributes to the E-cadherin transactivation under hypotonic conditions. Further upstream, adhesion was found to be a prerequisite for E-cadherin transactivation in this model. In summary, the present study provides evidence that E-cadherin is an osmo-sensitive gene that responds to hypotonic stress. The function of this regulation may be found in morphological changes induced by cell swelling. It is likely that induction of E-cadherin contributes to the stabilization between adjacent cells in order to withstand the physical forces induced by hypotonicity.  相似文献   

11.
In human keratinocytes, mediated transport of Cl- was found to occur mainly by two mechanisms: an anion exchange and an electrically conductive pathway. The contribution of the anion exchange, which accounted for about 50% of overall Cl- efflux, was assessed either by its sensitivity to inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and by means of Cl- substitution experiments. The anion exchange exhibited a saturation behaviour over the range 10-135 mM Cl-; Cl- was more efficient than HCO3-, Br- and NO3- in increasing Cl- efflux rate, whereas SO4(2-) and I- inhibited Cl- efflux. The electrically conductive Cl- pathway, which accounted for about 40% of total Cl- efflux, was inhibited by the Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and was at least partially sensitive to variation of the plasma membrane potential. The Cl- channel was insensitive to elevation in the intracellular concentration of either cyclic AMP and calcium ions. Indomethacin, an inhibitor of the cyclooxygenase, failed to reduce Cl- efflux, whereas nordihydroguaiaretic acid (NDGA), an inhibitor of the lipoxygenase, induced 50% inhibition of Cl- efflux. These results support the conclusion that endogenous production of lipoxygenase-derived arachidonic acid metabolite(s) might be responsible for high basal Cl- permeability in human keratinocytes.  相似文献   

12.
We studied the replication of keratinocytes in stratified squamous epithelia. Other studies have revealed functional and morphological heterogeneity in the replicating population of such cells. To examine possible kinetic heterogeneity, we determined the cell-cycle lengths of replicating cells in cultures of human epidermal keratinocytes. A double-label assay was developed, which measures the time between two successive cycles of DNA synthesis. The first cycle of DNA synthesis was marked by pulse labeling cultures for a brief period with 14C-thymidine (dThd), and the second cycle was detected by labeling at a later time with bromodeoxyuridine (BrdUrd). The time taken for the 14C-labeled DNA to become doubly labeled with BrdUrd was shown to correspond to the length of the cell cycle. In subconfluent cultures in which the cell number increased at an exponential rate, the average cell-cycle time was 21.5 h. In confluent cultures in which desquamation was balanced by cell renewal, the average cell cycle was 31.5 h. However, in confluent cultures, three populations of replicating cells were evident, these having cycle times of 22, 33, and 40 h. In subconfluent cultures, there was no clear evidence for cell-cycle heterogeneity of the replicating cells, although the most rapidly cycling cells in these cultures had a cycle time (16 h) considerably less than the most rapidly cycling cells in the confluent cultures (21 h). It is possible that the rapidly cycling cells seen in the subconfluent cultures were stem cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
AMPK regulation of the growth of cultured human keratinocytes   总被引:2,自引:0,他引:2  
AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). At concentrations of 10(-4) and 10(-3) M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10(-6) M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D3 (10(-7) and 10(-6) M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p < 0.05) as keratinocytes grown in control medium went from 25% to 100% confluence. In conclusion, the data are consistent with the hypothesis that activation of AMPK acts as a signal to diminish the proliferation of cultured keratinocytes as they approach confluence. They also suggest that AMPK activators, such as AICAR and troglitazone, inhibit keratinocyte growth and that the inhibition of cell growth by 1,25-dihydroxyvitamin D3 is AMPK-independent.  相似文献   

14.
Cirillo N  Femiano F  Gombos F  Lanza A 《FEBS letters》2006,580(13):3276-3281
Defects of cell-cell adhesion underlie disruption of epithelial integrity observed in patients with pemphigus vulgaris (PV), an autoimmune disease characterized by severe mucosal erosions and skin blisters. Pathogenic PV autoantibodies found in patients' sera target desmoglein 3 (Dsg3), a major component of the desmosome, but how does this phenomenon affect Dsg-dependent adhesion and lead to acantholysis still remains controversial. Here, we show that PV serum determines a reduction of Dsg3 half-life in HaCaT keratinocytes, although the total amount of Dsg3 remains unchanged. Immunofluorescence studies suggest that PV IgG exert their effect prevalently by binding non-desmosomal Dsg3 without causing its massive internalization. Furthermore, PV IgG targeting desmosome-assembled Dsg3 do not induce depletion of Dsg3 from the adhesion sites. Conversely, incorporation of PV IgG-Dsg3 complexes into new forming desmosomes appears perturbed. With our study, the basic biochemical changes of Dsg3 in an in vitro model of PV have been defined.  相似文献   

15.
Bovine and human epidermal cells were cultured on mitomycin C treated fibroblasts. The cells were carried through four passages and found to synthesize fibrous proteins and insoluble cell envelopes. Acid buffer soluble fibrous protein, prekeratin, and urea soluble fibrous protein were both identified and the latter was the major component in older cultures. Some of the prekeratin polypeptides of intact tissue were not found in cultured cells, but the ones that were present corresponded to those of whole tissue. X-ray diffraction, amino acid analysis and immunological techniques were used to establish that the polypeptides were keratins. The insoluble cell envelopes had a higher proline and 1/2 cystine content than the fibrous protein, similar to what is found in whole epidermis. Histidase, a characteristic enzyme marker of whole epidermis, was not observed in cultured cells. These studies indicate that differentiation occurs in cultured cells but it may not be as complete as in intact tissue.  相似文献   

16.
17.
The present study was undertaken to explore the possibility of the use of cultured human keratinocytes for the study of changes in lipid composition in relation to epidermal differentiation. In a submerged culture system, in which the stratification is incomplete, no significant differences have been found between the lipid composition of cells grown either at low calcium concentration (0.06 mM) (at which the keratinocyte differentiation is markedly retarded) or at normal calcium concentration (1.6 mM) (at which some differentiation takes place). Under these conditions the amount of phospholipids and sterols was high and that of ceramides was low. Furthermore, the acylglucosylceramides (AGC) and acylceramides (AC), the latter one known to be involved in water barrier function, were found to be absent. Contrary to this, both AGC and AC were found to be present in significant amounts in an air-exposed model using de-epidermized dermis (DED) as a substrate (in which, as judged from morphologic criteria, the extent of keratinocyte stratification is similar to that seen under the in vivo conditions). Fatty acid analysis revealed significantly lower content of 18:2 and higher content of 16:1 and 18:1 acids with all culture conditions used, as compared to the parent epidermis. This is probably a result of fatty acid levels and composition in fetal calf serum (which was used in the present study) that differ markedly from the in vivo situation. The 20:4 content was similar to that in the epidermis only in cells cultured under the submerged conditions, during which they have been found (Isseroff et al. 1987. J. Lipid Res. 28: 1342-1349) to be able to convert 18:2 to 20:4. In DED cultures, however, the 20:4 content was markedly lower. Under all culture conditions used, the triglyceride content was higher as compared to the non-cultured epidermis. The high content of triglycerides and the fatty acid composition of the various lipid fractions showed a resemblance with what is found in the epidermis in essential fatty acid-deficient animals. This resemblance was confirmed by electron micrographs which revealed the presence of some partially or completely empty lamellar bodies. The results of the present study suggest that the air-exposed culture model, in which the keratinocytes show a high extent of stratification, could be of great value in the study of epidermal lipid metabolism. However, further alterations in culture conditions are necessary to more closely approximate the lipid composition of noncultured epidermis.  相似文献   

18.
19.
Using immunofluorescence techniques, we have examined the microtubules and microfilaments in colonies of terminally differentiating human keratinocytes in tissue culture. The undifferentiated keratinocytes contained numerous microtubules, which radiated from a centrosomal organization center (MTOC). Differentiating keratinocytes, which leave the basal layer and begin to synthesize involucrin, displayed an altered cytoskeleton. Thick mats and coils of microtubules formed throughout the cytoplasm of the differentiated squames, and microfilaments were no longer visible after staining with phalloidin. Instead, only scattered stipples of phalloidin-stained material were observed. The results suggest that the terminal differentiation of epidermal cells involves a reorganization not only of the keratin filaments but of the entire cytoskeleton.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号